IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp464-470.html
   My bibliography  Save this article

Experimental and modeling studies of a micro direct methanol fuel cell

Author

Listed:
  • Falcão, D.S.
  • Oliveira, V.B.
  • Rangel, C.M.
  • Pinto, A.M.F.R.

Abstract

The Direct Methanol Fuel Cell (DMFC) has attracted much attention due to its potential applications as a power source for transportation and portable electronic devices. Based on the advantages of the scaling laws, miniaturization promises higher efficiency and performance of power generating devices and the MicroDMFC is therefore an emergent technology. In this work, a set of experiments with a MicroDMFC of 2.25 cm2 active area are performed in order to investigate the effect of important operating parameters. Maximum power density achieved was 32 mW/cm2 using a 4 M methanol concentration at room temperature. Polarization curves are compared with mathematical model simulations in order to achieve a better understanding of how parameters affect performance. The one-dimensional model used in this work takes in account coupled heat and mass transfer, along with the electrochemical reactions occurring in a direct methanol fuel cell and was already developed and validated for DMFC in previous work by Oliveira et al. [1–3]. The model is also used to predict some important parameters to analyze fuel cell performance, such as water transport coefficient and methanol crossover. This easy to implement simplified model is suitable for use in real-time MicroDMFC simulations. More experimental data are also reported bearing in mind the insufficient experimental data available in literature at room temperature, a goal condition to use this technology in portable applications.

Suggested Citation

  • Falcão, D.S. & Oliveira, V.B. & Rangel, C.M. & Pinto, A.M.F.R., 2015. "Experimental and modeling studies of a micro direct methanol fuel cell," Renewable Energy, Elsevier, vol. 74(C), pages 464-470.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:464-470
    DOI: 10.1016/j.renene.2014.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    2. D.S. Falcão & R.A. Silva & C.M. Rangel & A.M.F.R. Pinto, 2017. "Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs," Energies, MDPI, vol. 10(11), pages 1-9, October.
    3. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:464-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.