IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v73y2015icp28-35.html
   My bibliography  Save this article

Experimental study on calculation method of the radiant time factors

Author

Listed:
  • Lv, Liugen
  • Huang, Chen
  • Li, Li
  • Chen, Jianchang

Abstract

A calculation method of radiant time factors is presented and the method is used to calculate radiant cooling load. Based on experimental data of total heat gain and total cooling loads collected within 24-h, radiant heat gain and radiant cooling load can be calculated through convection and radiation separating method. Transfer function is obtained and 24-term radiant time factors can be calculated by transfer function coefficients matrix. The results show that the calculation method of radiant time factors is feasible by experiment and the results provide some important information for applying radiant time factors to calculate radiant cooling load in air conditioning building.

Suggested Citation

  • Lv, Liugen & Huang, Chen & Li, Li & Chen, Jianchang, 2015. "Experimental study on calculation method of the radiant time factors," Renewable Energy, Elsevier, vol. 73(C), pages 28-35.
  • Handle: RePEc:eee:renene:v:73:y:2015:i:c:p:28-35
    DOI: 10.1016/j.renene.2014.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114003036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Jong Min & Park, Yong-Jung & Kang, Shin-Hyung, 2014. "Temperature distribution and performance of ground-coupled multi-heat pump systems for a greenhouse," Renewable Energy, Elsevier, vol. 65(C), pages 49-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    2. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "The Development of ARIMA Models for the Clear Sky Beam and Diffuse Optical Depths for HVAC Systems Design Using RTSM: A Case Study of the Umlazi Township Area, South Africa," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    3. Evola, G. & Marletta, L., 2015. "The Solar Response Factor to calculate the cooling load induced by solar gains," Applied Energy, Elsevier, vol. 160(C), pages 431-441.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    2. Nowamooz, Hossein & Nikoosokhan, Saeid & Lin, Jian & Chazallon, Cyrille, 2015. "Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties," Renewable Energy, Elsevier, vol. 76(C), pages 7-15.
    3. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    4. Jeong Soo Shin & Jong Woo Park & Sean Hay Kim, 2020. "Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(7), pages 1-24, April.
    5. Qiu Tu & Lina Zhang & Linzhang Li & Chenmian Deng & Bingjun Wang & Binquan Gu & Zhengwu Dai, 2022. "Comparison of Application Effects of Capillary Radiation Heat Pump and Electric Heating Wire in Greenhouse Seedling Cultivation," Agriculture, MDPI, vol. 12(9), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:73:y:2015:i:c:p:28-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.