IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp453-465.html
   My bibliography  Save this article

State estimation for wind farms including the wind turbine generator models

Author

Listed:
  • Miranda-Blanco, Blanca Nieves
  • Díaz-Dorado, Eloy
  • Carrillo, Camilo
  • Cidrás, J.

Abstract

Wind farms can be analyzed using state estimation methods, which can be used to obtain its running state, including several aspects that cannot be easily obtained using other methods (e.g., capacitor bank aging) Using these methods on these types of networks is strongly affected by decoupling between active and reactive power and by a radial configuration, which is typical. For example, this decoupling affects its observability and robustness as well as the technical feasibility of the results. To overcome these drawbacks, an extended state estimation method is proposed in which the models for the different wind turbine technologies have been incorporated. These models have been mainly generated from measurement data using neural networks and polynomial fitting; these models do not require parameter values, which are rarely available from manufacturers. Furthermore, the resulting equations for modeling wind turbines are easily integrated into the state estimator due to their simplicity and derivatives.Thus, a method that guarantees feasible results, at least for wind turbines, was generated with increased observability robustness.

Suggested Citation

  • Miranda-Blanco, Blanca Nieves & Díaz-Dorado, Eloy & Carrillo, Camilo & Cidrás, J., 2014. "State estimation for wind farms including the wind turbine generator models," Renewable Energy, Elsevier, vol. 71(C), pages 453-465.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:453-465
    DOI: 10.1016/j.renene.2014.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Firouzi, Bahman Bahmani, 2009. "A practical algorithm for distribution state estimation including renewable energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2309-2316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    2. Ganesh Mayilsamy & Kumarasamy Palanimuthu & Raghul Venkateswaran & Ruban Periyanayagam Antonysamy & Seong Ryong Lee & Dongran Song & Young Hoon Joo, 2023. "A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems," Energies, MDPI, vol. 16(2), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Mortazi, Mohammad & Moradi, Ahmad & Khosravi, Mohsen, 2020. "Simultaneous optimization of transformer tap changer and network capacitors to improve the distribution system’s static security considering distributed generation sources," MPRA Paper 109052, University Library of Munich, Germany, revised 01 Jul 2020.
    3. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    4. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    5. Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
    6. Honglu Zhu & Tingting Jiang & Yahui Sun & Shuang Sun, 2022. "A New Regional Distributed Photovoltaic Power Calculation Method Based on FCM-mRMR and nELM Model," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    7. Krystel K. Castillo-Villar, 2014. "Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future," Energies, MDPI, vol. 7(11), pages 1-33, November.
    8. Niknam, Taher & Meymand, Hamed Zeinoddini & Nayeripour, Majid, 2010. "A practical algorithm for optimal operation management of distribution network including fuel cell power plants," Renewable Energy, Elsevier, vol. 35(8), pages 1696-1714.
    9. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    10. Niknam, Taher, 2011. "A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators," Applied Energy, Elsevier, vol. 88(3), pages 778-788, March.
    11. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    12. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    13. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:453-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.