IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp286-291.html
   My bibliography  Save this article

Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water

Author

Listed:
  • Mallaki, Mehrdad
  • Fatehi, Rouhollah

Abstract

Date palm trees (Phoenix dactylifera L.) produce approximately 40 kg of burnable waste including dried leaves, spathes, sheaths, and petioles annually. In this paper, the potential of date palm waste as a bioenergy source has been investigated. As a sample project, a power plant has been preliminary designed to simultaneously generate electrical power using a steam Rankine cycle and distilled water by the thermal desalination of seawater using a multiple effect evaporator. The results indicated that a small plant in Bushehr Province in southern Iran which burns 140,000 tons of waste annually can produce approximately 62 GWh of electricity in conjunction with 2.27 million tons of distilled water. This production is equivalent to 75 GWhe/year. Environmental assessments revealed that the use of this amount of biomass leads to a net green-house gas (GHG) reduction of 40,500 tCO2/year.

Suggested Citation

  • Mallaki, Mehrdad & Fatehi, Rouhollah, 2014. "Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water," Renewable Energy, Elsevier, vol. 63(C), pages 286-291.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:286-291
    DOI: 10.1016/j.renene.2013.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    2. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    2. Abda Emam, 2022. "Present and future: Does agriculture affect economic growth and the environment in the Kingdom of Saudi Arabia?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(10), pages 380-392.
    3. Djaafri, Mohammed & Drissi, Aicha & Mehdaoui, Sabrina & Kalloum, Slimane & Atelge, M.R. & Khelafi, Mostefa & Kaidi, Kamel & Salem, Fethya & Tahri, Ahmed & Atabani, A.E. & Štěpanec, Libor, 2023. "Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study," Energy, Elsevier, vol. 269(C).
    4. Noureddine Baaka & Ramzi Khiari & Aminoddin Haji, 2023. "Ecofriendly Dyeing of Textile Materials with Natural Colorants from Date Palm Fiber Fibrillium," Sustainability, MDPI, vol. 15(2), pages 1-10, January.
    5. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    6. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Braimakis, Konstantinos & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Εnergy-exergy analysis of ultra-supercritical biomass-fuelled steam power plants for industrial CHP, district heating and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 252-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    2. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    3. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    4. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    5. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    6. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    7. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    8. Palma-Flores, Oscar & Flores-Tlacuahuac, Antonio & Canseco-Melchorb, Graciela, 2016. "Simultaneous molecular and process design for waste heat recovery," Energy, Elsevier, vol. 99(C), pages 32-47.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    11. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    12. Javanshir, Alireza & Sarunac, Nenad, 2017. "Thermodynamic analysis of a simple Organic Rankine Cycle," Energy, Elsevier, vol. 118(C), pages 85-96.
    13. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    14. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
    15. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    16. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Increased power production through enhancements to the Organic Flash Cycle (OFC)," Energy, Elsevier, vol. 45(1), pages 686-695.
    17. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    18. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    19. Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Economic comparison of ORC (Organic Rankine cycle) processes at different scales," Energy, Elsevier, vol. 74(C), pages 694-706.
    20. Liu, Bo & Rivière, Philippe & Coquelet, Christophe & Gicquel, Renaud & David, Franck, 2012. "Investigation of a two stage Rankine cycle for electric power plants," Applied Energy, Elsevier, vol. 100(C), pages 285-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:286-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.