IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp86-93.html
   My bibliography  Save this article

Experimental study on the performance of a solar-biomass hybrid air-conditioning system

Author

Listed:
  • Prasartkaew, Boonrit
  • Kumar, S.

Abstract

Renewable energy based technologies can be introduced for building cooling applications. Most studies on solar absorption cooling use fossil energy based auxiliary heaters. This paper presents experimental studies of a solar-biomass hybrid air conditioning system. The system performances at quasi-steady state conditions were analyzed. The results demonstrate that the system operates at about 75% of nominal capacity at an average overall system coefficient of performance of about 0.11. Performances of individual components of the system were also evaluated. The experimental results compared with results from other studies shows that the proposed system's performance in terms of chiller and overall system coefficient of performance is superior.

Suggested Citation

  • Prasartkaew, Boonrit & Kumar, S., 2013. "Experimental study on the performance of a solar-biomass hybrid air-conditioning system," Renewable Energy, Elsevier, vol. 57(C), pages 86-93.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:86-93
    DOI: 10.1016/j.renene.2013.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    2. Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
    3. Pongtornkulpanich, A. & Thepa, S. & Amornkitbamrung, M. & Butcher, C., 2008. "Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand," Renewable Energy, Elsevier, vol. 33(5), pages 943-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
    2. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    3. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    4. Zhang, Xinghui & Yang, Jiaojiao & Fan, Yi & Zhao, Xudong & Yan, Ruimiao & Zhao, Juan & Myers, Steve, 2020. "Experimental and analytic study of a hybrid solar/biomass rural heating system," Energy, Elsevier, vol. 190(C).
    5. Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
    6. Salameh, Tareq & Alkhalidi, Ammar & Hussien Rabaia, Malek Kamal & Al Swailmeen, Yaser & Alroujmah, Wared & Ibrahim, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimization and life cycle analysis of solar-powered absorption chiller designed for a small house in the United Arab Emirates using evacuated tube technology," Renewable Energy, Elsevier, vol. 198(C), pages 200-212.
    7. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    8. Edwin, M. & Joseph Sekhar, S., 2016. "Thermo-economic assessment of hybrid renewable energy based cooling system for food preservation in hilly terrain," Renewable Energy, Elsevier, vol. 87(P1), pages 493-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    2. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    3. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    4. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    5. Tanunya Visessonchok & Masahiro Sugiyama & Hajime Sasaki & Ichiro Sakata, 2016. "Detection and introduction of emerging technologies for green buildings in Thailand," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 12(1), pages 2-19.
    6. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    7. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    8. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    9. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    10. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    11. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    13. Ali, Dilawer & Ratismith, Wattana, 2021. "A semicircular trough solar collector for air-conditioning system using a single effect NH3–H2O absorption chiller," Energy, Elsevier, vol. 215(PA).
    14. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    15. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    16. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    17. Mahelet G. Fikru & Gregory Gelles & Ana-Maria Ichim & Joseph D. Smith, 2019. "Notes on the Economics of Residential Hybrid Energy System," Energies, MDPI, vol. 12(14), pages 1-18, July.
    18. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    19. Lin, P. & Wang, R.Z. & Xia, Z.Z., 2011. "Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling: Cycle analysis and absorption cooling performances," Renewable Energy, Elsevier, vol. 36(5), pages 1401-1412.
    20. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:86-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.