IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp426-435.html
   My bibliography  Save this article

Improvement of airfoil design using smooth curvature technique

Author

Listed:
  • Chen, Jin
  • Wang, Quan
  • Pang, Xiaoping
  • Li, Songlin
  • Guo, Xiaofeng

Abstract

The newly developed generalized function of airfoil profiles of wind turbine based on Trajkovski conformal transform theory can be used to fit the existing airfoil profiles and create the new ones by adjusting the coefficients of the generalized function. In this approach, the geometrical scale factor a, which was taken as a constant 0.25, has a significant impact on the curvature smooth continuity which will affect the aerodynamic performances of the airfoil. In this paper, the functional integral theory of wind turbine airfoils is studied. Furthermore, the advantage and the importance of curvature issue for airfoil surface are discussed in detail. It is found that, when different existing airfoils were analyzed using the generalized function, the geometrical scale factor a reaches an unexpected lower value. Based on curvature smooth continuity theory, a new method is presented to correct the geometrical scale factor a. As a result, the curvature smooth continuity of the fitting profile has been greatly improved, compared with that of the original profile. As an application of this new method, the DU93-W-210 airfoil is improved with the corrected geometrical scale factor a, and optimized using genetic algorithm (GA) method by controlling the coefficients of the shape function, leading to a new airfoil. Comparatively, the aerodynamic performances of the new airfoil such as maximum lift coefficient, maximum lift-drag ratio, roughness insensitivity and so forth are better than the DU93-W-210 airfoil performances. The achieved results show that this novel method is feasible to optimize airfoils of wind turbine.

Suggested Citation

  • Chen, Jin & Wang, Quan & Pang, Xiaoping & Li, Songlin & Guo, Xiaofeng, 2013. "Improvement of airfoil design using smooth curvature technique," Renewable Energy, Elsevier, vol. 51(C), pages 426-435.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:426-435
    DOI: 10.1016/j.renene.2012.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habali, S.M. & Saleh, I.A., 1995. "Design and testing of small mixed airfoil wind turbine blades," Renewable Energy, Elsevier, vol. 6(2), pages 161-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. No, T.S. & Kim, J.-E. & Moon, J.H. & Kim, S.J., 2009. "Modeling, control, and simulation of dual rotor wind turbine generator system," Renewable Energy, Elsevier, vol. 34(10), pages 2124-2132.
    2. Youcef Ettoumi, Fatiha & Adane, Abd El Hamid & Benzaoui, Mohamed Lassaad & Bouzergui, Nabila, 2008. "Comparative simulation of wind park design and siting in Algeria," Renewable Energy, Elsevier, vol. 33(10), pages 2333-2338.
    3. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:426-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.