IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp255-262.html
   My bibliography  Save this article

Estimation of tidal power potential

Author

Listed:
  • Walters, Roy A.
  • Tarbotton, Michael R.
  • Hiles, Clayton E.

Abstract

Several approaches can be used for estimating tidal power potential. From a theoretical point of view, others have shown that the problem can be reduced to a single or multiple boundary problem with simple geometry where each case has a well defined maximum power potential. From a practical point of view, the potential can be approximated from the ambient flow. Questions naturally arise whether the theoretical approach can be applied to a typical field-scale problem, and whether the practical approach has any validity. In order to provide more insight into these questions, form drag representing tidal turbines has been introduced into a numerical flow model. This is an unstructured grid model with an implicit treatment of wetting and drying that has been shown to be robust, accurate, and efficient for highly irregular coastal ocean environments and is well suited for this problem. The field site that has been examined is Minas Passage in the Bay of Fundy which provides an interesting practical perspective for this problem. In the end, only a fraction of the theoretical maximum power potential can be realized in practice because of physical constraints on the maximum form drag for tidal turbines.

Suggested Citation

  • Walters, Roy A. & Tarbotton, Michael R. & Hiles, Clayton E., 2013. "Estimation of tidal power potential," Renewable Energy, Elsevier, vol. 51(C), pages 255-262.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:255-262
    DOI: 10.1016/j.renene.2012.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cooke, S.C. & Willden, R.H.J. & Byrne, B.W., 2016. "The potential of cross-stream aligned sub-arrays to increase tidal turbine efficiency," Renewable Energy, Elsevier, vol. 97(C), pages 284-292.
    2. Manchester, Sebastian & Barzegar, Behzad & Swan, Lukas & Groulx, Dominic, 2013. "Energy storage requirements for in-stream tidal generation on a limited capacity electricity grid," Energy, Elsevier, vol. 61(C), pages 283-290.
    3. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    4. Osorio, A.F. & Ortega, Santiago & Arango-Aramburo, Santiago, 2016. "Assessment of the marine power potential in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 966-977.
    5. Yang, Zhaoqing & Wang, Taiping & Branch, Ruth & Xiao, Ziyu & Deb, Mithun, 2021. "Tidal stream energy resource characterization in the Salish Sea," Renewable Energy, Elsevier, vol. 172(C), pages 188-208.
    6. Kirinus, Eduardo de Paula & Oleinik, Phelype Haron & Costi, Juliana & Marques, Wiliam Correa, 2018. "Long-term simulations for ocean energy off the Brazilian coast," Energy, Elsevier, vol. 163(C), pages 364-382.
    7. Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.
    8. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    9. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    10. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    11. Barrington-Leigh, Christopher & Ouliaris, Mark, 2017. "The renewable energy landscape in Canada: A spatial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 809-819.
    12. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    13. Marsh, P. & Penesis, I. & Nader, J.R. & Couzi, C. & Cossu, R., 2021. "Assessment of tidal current resources in Clarence Strait, Australia including turbine extraction effects," Renewable Energy, Elsevier, vol. 179(C), pages 150-162.
    14. Chong, Heap-Yih & Lam, Wei-Haur, 2013. "Ocean renewable energy in Malaysia: The potential of the Straits of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 169-178.
    15. Vogel, C.R. & Willden, R.H.J. & Houlsby, G.T., 2019. "Tidal stream turbine power capping in a head-driven tidal channel," Renewable Energy, Elsevier, vol. 136(C), pages 491-499.
    16. Philip A. Gillibrand & Roy A. Walters & Jason McIlvenny, 2016. "Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress," Energies, MDPI, vol. 9(10), pages 1-22, October.
    17. Coles, D.S. & Blunden, L.S. & Bahaj, A.S., 2017. "Assessment of the energy extraction potential at tidal sites around the Channel Islands," Energy, Elsevier, vol. 124(C), pages 171-186.
    18. Thiébaut, Maxime & Sentchev, Alexei & du Bois, Pascal Bailly, 2019. "Merging velocity measurements and modeling to improve understanding of tidal stream resource in Alderney Race," Energy, Elsevier, vol. 178(C), pages 460-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:255-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.