IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v45y2012icp16-23.html
   My bibliography  Save this article

Robust coordinated control of electrolyzer and PSS for stabilization of microgrid based on PID-based mixed H2/H∞ control

Author

Listed:
  • Ngamroo, Issarachai

Abstract

In the stand-alone microgrid with hybrid wind, fuel cell (FC) with electrolyzer (EZ) and diesel generations, the intermittent wind power may cause the serious power fluctuation. In addition to the hydrogen production for FC, the EZ can be used to alleviate power fluctuation by an appropriate control of the absorbed power. Nevertheless, the EZ may fail to suppress the power fluctuation due to large disturbances. To enhance the EZ control performance, a power system stabilizer (PSS) which is assumed to be equipped with a diesel generator can be used. This paper proposes the robust coordinated control of EZ and PSS for microgrid stabilization. The structure of power controller of EZ and PSS is a proportional-integral-derivative (PID). To improve the damping performance and robustness of EZ controller and PSS, the PID parameters of both EZ and PSS are simultaneously tuned based on the mixed H2/H∞ control by bee colony optimization. Simulation studies show that the stabilizing performance and robustness of the proposed EZ and PSS are superior to those of the individual device under system uncertainties such as various wind patterns, loading conditions and severe faults.

Suggested Citation

  • Ngamroo, Issarachai, 2012. "Robust coordinated control of electrolyzer and PSS for stabilization of microgrid based on PID-based mixed H2/H∞ control," Renewable Energy, Elsevier, vol. 45(C), pages 16-23.
  • Handle: RePEc:eee:renene:v:45:y:2012:i:c:p:16-23
    DOI: 10.1016/j.renene.2012.01.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haochen Hua & Chuantong Hao & Yuchao Qin & Junwei Cao, 2018. "A Class of Control Strategies for Energy Internet Considering System Robustness and Operation Cost Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:45:y:2012:i:c:p:16-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.