IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i6p1826-1835.html
   My bibliography  Save this article

Optimal distribution for photovoltaic solar trackers to minimize power losses caused by shadows

Author

Listed:
  • Díaz-Dorado, Eloy
  • Suárez-García, Andrés
  • Carrillo, Camilo J.
  • Cidrás, José

Abstract

The typical design of photovoltaic facilities with photovoltaic solar trackers is achieved using a squared or diagonal distribution of the trackers. In general, this is a good distribution for harvesting most solar radiation. However, these facilities can be affected by shadows of environmental objects like buildings, vegetation, etc. In this paper, a metaheuristic method based on evolution strategies is presented for calculating the best location of each tracker on a building of irregular shape, considering the shadows caused by obstacles and photovoltaic trackers. The evolution strategies will use the energy readings obtained by a photovoltaic tracker distribution to look for the best location. In the calculus of the energy, solar charts are used to combine the solar radiation received and shadows suffered by the tracker for each solar position.

Suggested Citation

  • Díaz-Dorado, Eloy & Suárez-García, Andrés & Carrillo, Camilo J. & Cidrás, José, 2011. "Optimal distribution for photovoltaic solar trackers to minimize power losses caused by shadows," Renewable Energy, Elsevier, vol. 36(6), pages 1826-1835.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1826-1835
    DOI: 10.1016/j.renene.2010.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    2. Perpiñán, O., 2012. "Cost of energy and mutual shadows in a two-axis tracking PV system," Renewable Energy, Elsevier, vol. 43(C), pages 331-342.
    3. Abdelghani-Idrissi, M.A. & Khalfallaoui, S. & Seguin, D. & Vernières-Hassimi, L. & Leveneur, S., 2018. "Solar tracker for enhancement of the thermal efficiency of solar water heating system," Renewable Energy, Elsevier, vol. 119(C), pages 79-94.
    4. Zeineb Behi & Kelvin Tsun Wai Ng & Amy Richter & Nima Karimi & Abhijeet Ghosh & Lei Zhang, 2022. "Exploring the untapped potential of solar photovoltaic energy at a smart campus: Shadow and cloud analyses," Energy & Environment, , vol. 33(3), pages 511-526, May.
    5. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    8. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.
    9. d'Alessandro, Vincenzo & Di Napoli, Fabio & Guerriero, Pierluigi & Daliento, Santolo, 2015. "An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects," Renewable Energy, Elsevier, vol. 83(C), pages 294-304.
    10. Fathabadi, Hassan, 2016. "Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 485-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1826-1835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.