IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i7p1602-1608.html
   My bibliography  Save this article

Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis

Author

Listed:
  • García Martín, Juan Francisco
  • Cuevas, Manuel
  • Bravo, Vicente
  • Sánchez, Sebastián

Abstract

Hydrolysates from olive prunings (a renewable, low-cost, easily available, agricultural residue) were fermented with the unconventional yeast Candida tropicalis NBRC 0618 to produce not only ethanol fuel but also xylitol as a by-product, which adds value to the economic viability of the bioprocess. Autohydrolysis took place at 200 °C in a stirred stainless-steel tank reactor. The influence of the solid/liquid ratio in the reactor was studied. Fermentation experiments were conducted in a batch-culture reactor at a temperature of 30 °C, a stirring rate of 500 rpm and pH values of between 5.0 and 6.5. Under the operating conditions tested the highest yields of ethanol and xylitol were obtained with the hydrolysate fermented at pH 5.0 and solely the airflow that entered via the stirring vortex. Under these conditions, the instantaneous ethanol yield was 0.44 g g−1 and the overall xylitol yield 0.13 g g−1.

Suggested Citation

  • García Martín, Juan Francisco & Cuevas, Manuel & Bravo, Vicente & Sánchez, Sebastián, 2010. "Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis," Renewable Energy, Elsevier, vol. 35(7), pages 1602-1608.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1602-1608
    DOI: 10.1016/j.renene.2009.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poveda-Giraldo, Jhonny Alejandro & Solarte-Toro, Juan Camilo & Cardona Alzate, Carlos Ariel, 2021. "The potential use of lignin as a platform product in biorefineries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. García Martín, Juan F. & Sánchez, Sebastián & Cuevas, Manuel, 2013. "Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings," Renewable Energy, Elsevier, vol. 51(C), pages 382-387.
    3. Raj, Kanak & Krishnan, Chandraraj, 2020. "Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis," Renewable Energy, Elsevier, vol. 153(C), pages 392-403.
    4. Cuevas, Manuel & Sánchez, Sebastián & García, Juan F. & Baeza, Jaime & Parra, Carolina & Freer, Juanita, 2015. "Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones," Renewable Energy, Elsevier, vol. 74(C), pages 839-847.
    5. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1602-1608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.