IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p42-51.html
   My bibliography  Save this article

Integrated power characteristic study of DFIG and its frequency converter in wind power generation

Author

Listed:
  • Li, Shuhui
  • Haskew, Timothy A.
  • Jackson, Jeff

Abstract

A doubly fed induction generator (DFIG) is a variable speed induction machine. It is a standard, wound rotor induction machine with its stator windings directly connected to the grid and its rotor windings connected to the grid through a back-to-back AC/DC/AC PWM converter. The power generation of a DFIG includes power delivered from two paths, one from the stator to the grid and the other from the rotor, through the frequency converter, to the grid. The power production characteristics, therefore, depend not only on the induction machine but also on the two PWM converters as well as how they are controlled. This paper investigates power generation characteristics of a DFIG system through computer simulation. The specific features of the study are (1) a steady-state model of a DFIG system in d–q reference frame, (2) a simulation mechanism that reflects decoupled d–q control strategies, (3) power characteristic simulation for both generator and converter, and (4) an integrative study combining stator, rotor and converter together. An extensive analysis is conducted to examine integrated power generation characteristics of DFIG and its frequency converter under different wind and d–q control conditions so as to benefit the development of advanced DFIG control technology.

Suggested Citation

  • Li, Shuhui & Haskew, Timothy A. & Jackson, Jeff, 2010. "Integrated power characteristic study of DFIG and its frequency converter in wind power generation," Renewable Energy, Elsevier, vol. 35(1), pages 42-51.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:42-51
    DOI: 10.1016/j.renene.2009.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109003127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nayeripour, Majid & Mahdi Mansouri, M., 2015. "An advanced analytical calculation and modeling of the electrical and mechanical harmonics behavior of Doubly Fed Induction Generator in wind turbine," Renewable Energy, Elsevier, vol. 81(C), pages 275-285.
    2. Mishra, Anirban & Tripathi, P.M. & Chatterjee, Kalyan, 2018. "A review of harmonic elimination techniques in grid connected doubly fed induction generator based wind energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 1-15.
    3. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    4. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    6. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.