IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i12p2812-2820.html
   My bibliography  Save this article

Increases in the average power output of wave energy converters using quiescent period predictive control

Author

Listed:
  • Belmont, M.R.

Abstract

The potential of controlling wave energy converters, (WEC), by deterministic prediction of large damaging waves is introduced and shown to offer very substantial increases in the annual average power output of such devices. Results obtained for idealised WEC models show that the potential exists for this increase to be at least a factor of two. Numerical simulations of actual dynamical models for both point absorbers and directionally sensitive devices employing practical control strategies show that most of this potential can actually be realised. The control of large scale wave farms using quiescent period predictive control is likely to be most cost effective using master/slave WEC systems. To achieve the computational savings that will allow this strategy analytic approximations are required for the response of WECs with time varying coefficients, preliminary forms of these have also been introduced.

Suggested Citation

  • Belmont, M.R., 2010. "Increases in the average power output of wave energy converters using quiescent period predictive control," Renewable Energy, Elsevier, vol. 35(12), pages 2812-2820.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2812-2820
    DOI: 10.1016/j.renene.2010.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forbush, Dominic D. & Bacelli, Giorgio & Spencer, Steven J. & Coe, Ryan G. & Bosma, Bret & Lomonaco, Pedro, 2022. "Design and testing of a free floating dual flap wave energy converter," Energy, Elsevier, vol. 240(C).
    2. Li, Guang & Weiss, George & Mueller, Markus & Townley, Stuart & Belmont, Mike R., 2012. "Wave energy converter control by wave prediction and dynamic programming," Renewable Energy, Elsevier, vol. 48(C), pages 392-403.
    3. Vincenzo Piscopo & Guido Benassai & Renata Della Morte & Antonio Scamardella, 2018. "Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea," Energies, MDPI, vol. 11(4), pages 1-23, April.
    4. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    5. Jama, M.A. & Noura, H. & Wahyudie, A. & Assi, A., 2015. "Enhancing the performance of heaving wave energy converters using model-free control approach," Renewable Energy, Elsevier, vol. 83(C), pages 931-941.

    More about this item

    Keywords

    Wave energy capture; Predictive control;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2812-2820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.