IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i8p1896-1901.html
   My bibliography  Save this article

The study on the carbon dioxide sequestration by applying wooden structure on eco-technological and leisure facilities

Author

Listed:
  • Hung, Chung-Pin
  • Wei, Chiang
  • Wang, Song Yung
  • Lin, Far-Ching

Abstract

Because the photosynthesis ability of old artificial forest stands is inferior to that of young stands, the utilization of these logs is benefit to the sequestration of carbon dioxide. Hence, construction of wooden patios, trails, and retaining wall to substitute concrete ones could reduce the carbon dioxide emission in Taiwan. According the research data, the energy consumption during wood processing was very low, so did the carbon dioxide emission. Because concrete was replaced and about 50% of wood consists of carbon which is from carbon dioxide sequestration, both the utilization of wood and artificial forest planted could reduce the carbon dioxide concentration. The purpose of the study was to evaluate the effects of carbon dioxide emission and sequestration by using wooden structure in both wooden leisure and eco-technological facilities. Results shown when check dam constructed by ACQ treated Japanese cedar following O&D (outdoor) method and CNS3000 K4 criterion with 40 years lifetime could reduce about 30 tons of carbon dioxide emission, which is equivalent to the carbon dioxide expiration of 92 persons per year. On another case, 61 tons of carbon dioxide emission was reduced, which is equivalent to the carbon dioxide expiration of 190 persons per year. If the high energy consumption materials, such as steel and cement, could be substituted by wood or wooden material, it could be beneficial to the sustainable management of the earth environment.

Suggested Citation

  • Hung, Chung-Pin & Wei, Chiang & Wang, Song Yung & Lin, Far-Ching, 2009. "The study on the carbon dioxide sequestration by applying wooden structure on eco-technological and leisure facilities," Renewable Energy, Elsevier, vol. 34(8), pages 1896-1901.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:8:p:1896-1901
    DOI: 10.1016/j.renene.2008.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108004618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wan-Yu & Chiang, Yi-Hua & Lin, Chun-Cheng, 2022. "Adopting renewable energies to meet the carbon reduction target: Is forest carbon sequestration cheaper?," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:8:p:1896-1901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.