IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i7p1742-1751.html
   My bibliography  Save this article

The features of sustainable Solar Hydroelectric Power Plant

Author

Listed:
  • Glasnovic, Zvonimir
  • Margeta, Jure

Abstract

This work presents the main features of the new power plant that comprises the modified reversible hydroelectric (HE) power plant operating together with the photovoltaic (PV) power plant. Such Solar Hydroelectric Power Plant (SHE) uses solar energy as the only input for production of solar and hydro energy. Thereat, water reservoir serves for daily and seasonal energy storage, thus basically solving the problem of energy storage, which is the biggest problem of wider use of solar energy. The most expensive part of SHE is the PV generator, whose optimal sizing is essential for providing energetic independence of a settlement or isolated consumer. A systematic approach that includes all relevant elements of this system has been implemented for optimal sizing of the PV power plant. The developed model was used in analysis of certain parameters of the SHE system. The results of the analysis show the system characteristics and that the proposed model describes the operation of the power plant very well. The feasibility and characteristics of the power plant were tested on electric energy supply of the island of Vis in Croatia. It has been established that the system is real, feasible and can be very successfully applied on different locations, for different consumers and can vary in size. The prerequisite for realization of such system is the construction of a modified reversible HE power plant. The presented SHE represents a permanently sustainable energy source that can continuously provide power supply to a consumer, using exclusively natural and renewable energy sources, without causing harmful effects on the environment.

Suggested Citation

  • Glasnovic, Zvonimir & Margeta, Jure, 2009. "The features of sustainable Solar Hydroelectric Power Plant," Renewable Energy, Elsevier, vol. 34(7), pages 1742-1751.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1742-1751
    DOI: 10.1016/j.renene.2008.12.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.12.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    3. Margeta, Jure & Glasnovic, Zvonimir, 2011. "Exploitation of temporary water flow by hybrid PV-hydroelectric plant," Renewable Energy, Elsevier, vol. 36(8), pages 2268-2277.
    4. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    5. Margeta, Jure & Glasnovic, Zvonimir, 2010. "Feasibility of the green energy production by hybrid solar + hydro power system in Europe and similar climate areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1580-1590, August.
    6. Glasnovic, Zvonimir & Margeta, Karmen & Premec, Krunoslav, 2016. "Could Key Engine, as a new open-source for RES technology development, start the third industrial revolution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1194-1209.
    7. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    8. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    9. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    10. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    11. Caldeira, Marina Júnia Vilela & Ferraz, Guilherme Martinez Figueiredo & Santos, Ivan Felipe Silva dos & Tiago Filho, Geraldo Lúcio & Barros, Regina Mambeli, 2023. "Using solar energy for complementary energy generation and water level recovery in Brazilian hybrid hydroelectricity: An energy and economic study," Renewable Energy, Elsevier, vol. 218(C).
    12. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    13. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
    14. Shekarchian, M. & Moghavvemi, M. & Rismanchi, B. & Mahlia, T.M.I. & Olofsson, T., 2012. "The cost benefit analysis and potential emission reduction evaluation of applying wall insulation for buildings in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4708-4718.
    15. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    16. Glasnovic, Zvonimir & Margeta, Jure, 2011. "Vision of total renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1873-1884, May.
    17. Nuria Novas & Rosa María Garcia & Jose Manuel Camacho & Alfredo Alcayde, 2021. "Advances in Solar Energy towards Efficient and Sustainable Energy," Sustainability, MDPI, vol. 13(11), pages 1-31, June.
    18. Zvonimir Glasnovic & Karmen Margeta & Visnja Omerbegovic, 2013. "Artificial Water Inflow Created by Solar Energy for Continuous Green Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2303-2323, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1742-1751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.