IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i2p425-429.html
   My bibliography  Save this article

Design and construction of a simple blade pitch measurement system for small wind turbines

Author

Listed:
  • Whale, Jonathan

Abstract

For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms.

Suggested Citation

  • Whale, Jonathan, 2009. "Design and construction of a simple blade pitch measurement system for small wind turbines," Renewable Energy, Elsevier, vol. 34(2), pages 425-429.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:2:p:425-429
    DOI: 10.1016/j.renene.2008.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    2. Ting, Chen-Ching & Lai, Chen-Wei & Huang, Chien-Bang, 2011. "Developing the dual system of wind chiller integrated with wind generator," Applied Energy, Elsevier, vol. 88(3), pages 741-747, March.
    3. Whale, J. & McHenry, M.P. & Malla, A., 2013. "Scheduling and conducting power performance testing of a small wind turbine," Renewable Energy, Elsevier, vol. 55(C), pages 55-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:2:p:425-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.