IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i2p248-253.html
   My bibliography  Save this article

Composite polymer electrolyte membranes containing polyrotaxanes

Author

Listed:
  • Cho, Hyun Dong
  • Won, Jongok
  • Ha, Heung Yong

Abstract

Cast Nafion and sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes containing different amounts of organic nanorod-shaped polyrotaxane (PR) were prepared and characterized, with the aim of improving the methanol barrier property of polymer electrolyte membranes (PEMs) for application in direct methanol fuel cells (DMFCs). PR was prepared using the inclusion complex reaction between α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG) of different molecular weights. The addition of PR to the structure of sSEBS, which involves hexagonal packing of cylinders, reduces the proton conductivity, as well as the methanol permeability, implying the creation of a tortuous path for methanol. The addition of PR to Nafion with ionic clusters reduced the crystallinity. The conductivity of the Nafion composite membranes increased on PR addition and decreased at higher PR contents. The organic PR inside the membrane changed the morphology during membrane preparation and provided a tortuous path for the transport of methanol. All of the sSEBS- and Nafion-based PR composite membranes showed higher selectivity parameter.

Suggested Citation

  • Cho, Hyun Dong & Won, Jongok & Ha, Heung Yong, 2008. "Composite polymer electrolyte membranes containing polyrotaxanes," Renewable Energy, Elsevier, vol. 33(2), pages 248-253.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:2:p:248-253
    DOI: 10.1016/j.renene.2007.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107001590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasani-Sadrabadi, Mohammad Mahdi & Dashtimoghadam, Erfan & Ghaffarian, Seyed Reza & Hasani Sadrabadi, Mohammad Hossein & Heidari, Mahdi & Moaddel, Homayoun, 2010. "Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)," Renewable Energy, Elsevier, vol. 35(1), pages 226-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:2:p:248-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.