IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i3p459-473.html
   My bibliography  Save this article

Analysis of directional meteorological data by means of cylindrical models

Author

Listed:
  • Pérez, Isidro A.
  • Ángeles García, M.
  • Luisa Sánchez, M.
  • de Torre, Beatriz

Abstract

Cylindrical models, although scarcely used, are helpful tools in atmospheric science applications such as siting wind machines or setting up atmospheric pollution monitors. In this paper, three simple models have been successfully compared. The first, a second-order model, is an addition of two harmonic functions and was obtained by a multiple linear regression. It may be expressed in closed form and for this reason was taken as the reference model. The second was a weighted local average of directional neighbours and the third a robust variant of the second model. These models were used with wind speed and temperature data obtained from a RASS sodar during April 2001. The measurements were 10-min averages calculated at 20m intervals from 40 to 500m. Two different analyses were considered, namely, daily evolution and directional behaviour. In the first, there was a good agreement between the three models. Major differences were observed in the transitions between day and night at intermediate levels, although they were smoother in the second-order model. The directional analyses showed that the prevailing directions were more poorly defined by the second-order model, although it may be considered a reasonable approximation. The weighted local average model presented oscillations, which is not desirable from a practical point of view; the third model was more robust. As a result, the second-order model was preferred in daily analyses of lower levels due to its closed form. The coefficients of this model for daily evolution were successfully parameterised as a function of height. Finally, the undesirable oscillations of the second model disappeared when the weighting interval widened, though prevailing directions were less well defined.

Suggested Citation

  • Pérez, Isidro A. & Ángeles García, M. & Luisa Sánchez, M. & de Torre, Beatriz, 2007. "Analysis of directional meteorological data by means of cylindrical models," Renewable Energy, Elsevier, vol. 32(3), pages 459-473.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:3:p:459-473
    DOI: 10.1016/j.renene.2006.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106000504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Abbadi, Naif M., 2005. "Wind energy resource assessment for five locations in Saudi Arabia," Renewable Energy, Elsevier, vol. 30(10), pages 1489-1499.
    2. Vogiatzis, N. & Kotti, K. & Spanomitsios, S. & Stoukides, M., 2004. "Analysis of wind potential and characteristics in North Aegean, Greece," Renewable Energy, Elsevier, vol. 29(7), pages 1193-1208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Shafiqur Rehman & Naif M. Al-Abbadi, 2009. "Wind Power Characteristics on the North West Coast of Saudi Arabia," Energy & Environment, , vol. 20(8-1), pages 1257-1270, December.
    3. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    4. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    5. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    6. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    7. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    8. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    9. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    10. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    11. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    12. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    13. Rehman, Shafiqur & Al-Abbadi, Naif M., 2008. "Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia," Renewable Energy, Elsevier, vol. 33(12), pages 2653-2660.
    14. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    15. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    16. Murthy, K.S.R. & Rahi, O.P., 2016. "Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India," Renewable Energy, Elsevier, vol. 99(C), pages 1137-1145.
    17. Mohammed A. Al Yousif, 2020. "Renewable Energy Challenges and Opportunities in the Kingdom of Saudi Arabia," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(9), pages 1-1, September.
    18. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    19. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    20. Katsaprakakis, Dimitris Al. & Dakanali, Irini & Condaxakis, Constantinos & Christakis, Dimitris G., 2019. "Comparing electricity storage technologies for small insular grids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:3:p:459-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.