IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i8p1253-1263.html
   My bibliography  Save this article

Prediction of direct and global solar irradiance using broadband models: Validation of REST model

Author

Listed:
  • Alam, Shah

Abstract

In the present paper, three parametric models Yang, CPCR2 and REST (without considering transmittance due to nitrogen dioxide) have been analyzed for four Indian stations, namely New Delhi, Mumbai, Pune and Jaipur over the period of 1995–2002, under cloudless conditions. These stations have different climatic conditions. The beam radiation at normal incidence as well as global solar radiation at horizontal surface was computed for these locations during all seasons except monsoon (June to September). The computed values of beam and global irradiance was compared with reference values in case of beam and measured values in case of global solar radiation on the basis of percentage root mean square error (RMSE) and mean bias error (MBE). The maximum RMSE is 6.5% in REST model, as compare to 15% in Yang and 11% in CPCR2 model for predicting direct normal irradiance. The predicted global radiation at horizontal is showing maximum RMSE 7% in REST model, 13.4% in Yang and 25.9% in CPCR2 model. This shows that REST model has good agreement with measured data for these Indian stations as compare to other two models.

Suggested Citation

  • Alam, Shah, 2006. "Prediction of direct and global solar irradiance using broadband models: Validation of REST model," Renewable Energy, Elsevier, vol. 31(8), pages 1253-1263.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:8:p:1253-1263
    DOI: 10.1016/j.renene.2005.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105001734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    2. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    3. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    4. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    5. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    6. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    2. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    3. Saranchimeg, Sainbold & Nair, Nirmal K.C., 2021. "A novel framework for integration analysis of large-scale photovoltaic plants into weak grids," Applied Energy, Elsevier, vol. 282(PA).
    4. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    5. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    6. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    7. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    8. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    9. El Mghouchi, Y. & Ajzoul, T. & Taoukil, D. & El Bouardi, A., 2016. "The most suitable prediction model of the solar intensity, on horizontal plane, at various weather conditions in a specified location in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 84-98.
    10. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    11. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    12. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    13. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    14. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.
    15. El Mghouchi, Y. & El Bouardi, A. & Sadouk, A. & Fellak, I. & Ajzoul, T., 2016. "Comparison of three solar radiation models and their validation under all sky conditions – case study: Tetuan city in northern of Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1432-1444.
    16. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    17. Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C.G., 2008. "Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques," Renewable Energy, Elsevier, vol. 33(8), pages 1796-1803.
    18. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    19. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    20. Behar, O. & Sbarbaro, D. & Marzo, A. & Gonzalez, M. Trigo & Vidal, E. Fuentealba & Moran, L., 2020. "Critical analysis and performance comparison of thirty-eight (38) clear-sky direct irradiance models under the climate of Chilean Atacama Desert," Renewable Energy, Elsevier, vol. 153(C), pages 49-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:8:p:1253-1263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.