IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i15p2524-2533.html
   My bibliography  Save this article

Artificial neural networks used for the prediction of the cetane number of biodiesel

Author

Listed:
  • Ramadhas, A.S.
  • Jayaraj, S.
  • Muraleedharan, C.
  • Padmakumari, K.

Abstract

Cetane number (CN) is one of the most significant properties to specify the ignition quality of any fuel for internal combustion engines. The CN of biodiesel varies widely in the range of 48–67 depending upon various parameters including the oil processing technology and climatic conditions where the feedstock (vegetable oil) is collected. Determination of the CN of a fuel by an experimental procedure is a tedious job for the upcoming biodiesel production industry. The fatty acid composition of base oil predominantly affects the CN of the biodiesel produced from it. This paper discusses the currently available CN estimation techniques and the necessity of accurate prediction of CN of biodiesel. Artificial Neural Network (ANN) models are developed to predict the CN of any biodiesel. The present paper deals with the application of multi-layer feed forward, radial base, generalized regression and recurrent network models for the prediction of CN. The fatty acid compositions of biodiesel and the experimental CNs are used to train the networks. The parameters that affect the development of the model are also discussed. ANN predicted CNs are found to be in agreement with the experimental CNs. Hence, the ANN models developed can be used reliably for the prediction of CN of biodiesel.

Suggested Citation

  • Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C. & Padmakumari, K., 2006. "Artificial neural networks used for the prediction of the cetane number of biodiesel," Renewable Energy, Elsevier, vol. 31(15), pages 2524-2533.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:15:p:2524-2533
    DOI: 10.1016/j.renene.2006.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106000395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaya, Canan & Hamamci, Candan & Baysal, Akin & Akba, Osman & Erdogan, Sait & Saydut, Abdurrahman, 2009. "Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production," Renewable Energy, Elsevier, vol. 34(5), pages 1257-1260.
    2. Cherng-Yuan Lin & Yi-Wei Lin, 2012. "Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification," Energies, MDPI, vol. 5(7), pages 1-11, July.
    3. Evangelos G. Giakoumis & Christos K. Sarakatsanis, 2019. "A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition," Energies, MDPI, vol. 12(3), pages 1-30, January.
    4. Olalekan Alade & Dhafer Al Shehri & Mohamed Mahmoud & Kyuro Sasaki, 2019. "Viscosity–Temperature–Pressure Relationship of Extra-Heavy Oil (Bitumen): Empirical Modelling versus Artificial Neural Network (ANN)," Energies, MDPI, vol. 12(12), pages 1-13, June.
    5. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Raji, Mojtaba & Zarei, Alireza & Mohammadi, Amir H., 2020. "Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models," Renewable Energy, Elsevier, vol. 158(C), pages 465-473.
    6. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    7. K. E. K. Vimal & S. Vinodh & A. Raja, 2017. "Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1459-1480, August.
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    11. Javed, Syed & Baig, Rahmath Ulla & Murthy, Y.V.V. Satyanarayana, 2018. "Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model," Energy, Elsevier, vol. 160(C), pages 774-782.
    12. Manieniyan, V. & Vinodhini, G. & Senthilkumar, R. & Sivaprakasam, S., 2016. "Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation," Energy, Elsevier, vol. 114(C), pages 603-612.
    13. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    3. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    4. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    5. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    6. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    7. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    8. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    10. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    11. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.
    12. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    13. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    14. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    15. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    16. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    17. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Kashyap, Yashwant & Bansal, Ankit & Sao, Anil K., 2015. "Solar radiation forecasting with multiple parameters neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 825-835.
    19. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    20. Wahiba Yaïci & Michela Longo & Evgueniy Entchev & Federica Foiadelli, 2017. "Simulation Study on the Effect of Reduced Inputs of Artificial Neural Networks on the Predictive Performance of the Solar Energy System," Sustainability, MDPI, vol. 9(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:15:p:2524-2533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.