IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i13p2198-2206.html
   My bibliography  Save this article

Transient analysis of a PV power generator charging a capacitor for measurement of the I–V characteristics

Author

Listed:
  • Mahmoud, Marwan M.

Abstract

Measuring the I–V characteristics is of high importance since it can be considered as a quality and performance certificate for each PV generator. The most precise and inexpensive measuring method is represented in capacitor charging by the PV generator. Using the equivalent circuit of the PV generator with a capacitor as load and applying transient analysis on the circuit, we obtain the capacitor charging voltage and current as a function of time, as well as their differentials as a function of short circuit current and capacitor size. The derived equations facilitate the calculation of proper capacitance size for measuring the I–V characteristics, and considers the acquisition speed of the measuring system as demonstrated through two measurement samples in this paper. The capacitor size is directly and indirectly proportional to the short circuit current and open circuit voltage of the PV generator, respectively. Accordingly, the paper presents a capacitance calculation chart, which enables selecting the correct capacitance for measuring the I–V characteristics by a computerized data acquisition system.

Suggested Citation

  • Mahmoud, Marwan M., 2006. "Transient analysis of a PV power generator charging a capacitor for measurement of the I–V characteristics," Renewable Energy, Elsevier, vol. 31(13), pages 2198-2206.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:13:p:2198-2206
    DOI: 10.1016/j.renene.2005.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810500282X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parlak, Koray Sener, 2014. "FPGA based new MPPT (maximum power point tracking) method for PV (photovoltaic) array system operating partially shaded conditions," Energy, Elsevier, vol. 68(C), pages 399-410.
    2. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    3. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    4. Tamer Khatib & Wilfried Elmenreich & Azah Mohamed, 2017. "Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    5. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    6. Das, Soubhagya K. & Verma, Deepak & Nema, Savita & Nema, R.K., 2017. "Shading mitigation techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 369-390.
    7. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    8. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:13:p:2198-2206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.