IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i4p493-510.html
   My bibliography  Save this article

Mathematical optimization of a RES-H2 plant using a black box algorithm

Author

Listed:
  • Santarelli, M.
  • Pellegrino, D.

Abstract

The paper deals with the description of the procedure of mathematical optimization of a model of stand-alone energy system based only on renewable source (solar irradiance and micro-hydro power) integrated with a system for the production of hydrogen (electrolyzer, compressed gas storage and Proton Exchange Membrane Fuel Cell), whose aim is to supply the electricity needs of a residential user during a complete year of operation. The objective of the optimization problem is to minimize the investment cost of the plant while assuring the supply of the user requests. The decision variables of the optimization problem are linked to the size of the micro-hydro turbine, of the PV array, of the electrolyzer and of the fuel cell. Because of the structure of the plant, the mathematical problem is classified as a black-box problem, and it has been solved using the Downhill Simplex Method. The structure of the optimized plant is discussed through energy considerations. Moreover, the modifications that have been introduced in the basic Downhill algorithm are explained and discussed as well.

Suggested Citation

  • Santarelli, M. & Pellegrino, D., 2005. "Mathematical optimization of a RES-H2 plant using a black box algorithm," Renewable Energy, Elsevier, vol. 30(4), pages 493-510.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:4:p:493-510
    DOI: 10.1016/j.renene.2004.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104003003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2009. "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery," Renewable Energy, Elsevier, vol. 34(3), pages 683-691.
    2. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    3. Deshmukh, Sachin S. & Boehm, Robert F., 2008. "Review of modeling details related to renewably powered hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2301-2330, December.
    4. Korpås, Magnus & Greiner, Christopher J., 2008. "Opportunities for hydrogen production in connection with wind power in weak grids," Renewable Energy, Elsevier, vol. 33(6), pages 1199-1208.
    5. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    6. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    7. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.
    8. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    9. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    10. Andrzej Wędzik & Tomasz Siewierski & Michał Szypowski, 2019. "The Use of Black-Box Optimization Method for Determination of the Bus Connection Capacity in Electric Power Grid," Energies, MDPI, vol. 13(1), pages 1-21, December.
    11. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    12. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    13. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    14. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    15. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    16. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:4:p:493-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.