IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i13p2113-2127.html
   My bibliography  Save this article

Hysteretic characteristics of Wells turbine for wave power conversion

Author

Listed:
  • Setoguchi, T.
  • Kinoue, Y.
  • Kim, T.H.
  • Kaneko, K.
  • Inoue, M.

Abstract

A Wells turbine blade for wave power conversion has hysteretic characteristics in a reciprocating flow. The hysteretic loop is opposite to the well-known dynamic stall of an airfoil. In this paper, the mechanism of the hysteretic behavior was elucidated by an unsteady 3-dimensional Navier-Stokes numerical simulation. It was found that the hysteretic behavior was associated with a streamwise vortical flow appearing near the blade suction surface. And also the effects of solidity, setting angle and blade thickness on the hysteretic characteristics of the Wells turbine have been discussed.

Suggested Citation

  • Setoguchi, T. & Kinoue, Y. & Kim, T.H. & Kaneko, K. & Inoue, M., 2003. "Hysteretic characteristics of Wells turbine for wave power conversion," Renewable Energy, Elsevier, vol. 28(13), pages 2113-2127.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:13:p:2113-2127
    DOI: 10.1016/S0960-1481(03)00079-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810300079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00079-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefanizzi, Michele & Camporeale, Sergio Mario & Torresi, Marco, 2023. "Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion," Renewable Energy, Elsevier, vol. 214(C), pages 369-382.
    2. Torresi, M. & Camporeale, S.M. & Strippoli, P.D. & Pascazio, G., 2008. "Accurate numerical simulation of a high solidity Wells turbine," Renewable Energy, Elsevier, vol. 33(4), pages 735-747.
    3. Paderi, Maurizio & Puddu, Pierpaolo, 2013. "Experimental investigation in a Wells turbine under bi-directional flow," Renewable Energy, Elsevier, vol. 57(C), pages 570-576.
    4. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    5. Dhanasekaran, T.S. & Govardhan, M., 2005. "Computational analysis of performance and flow investigation on wells turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(14), pages 2129-2147.
    6. Shehata, Ahmed S. & Xiao, Qing & Selim, Mohamed M. & Elbatran, A.H. & Alexander, Day, 2017. "Enhancement of performance of wave turbine during stall using passive flow control: First and second law analysis," Renewable Energy, Elsevier, vol. 113(C), pages 369-392.
    7. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    8. Wang, Ru & Cui, Ying & Liu, Zhen & Li, Boyang & Zhang, Yongbo, 2024. "Numerical study on unsteady performance of a Wells turbine under irregular wave conditions," Renewable Energy, Elsevier, vol. 225(C).
    9. Thakker, A. & Dhanasekaran, T.S. & Ryan, J., 2005. "Experimental studies on effect of guide vane shape on performance of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(15), pages 2203-2219.
    10. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    12. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    13. Thakker, A. & Abdulhadi, R., 2008. "The performance of Wells turbine under bi-directional airflow," Renewable Energy, Elsevier, vol. 33(11), pages 2467-2474.
    14. Shehata, Ahmed S. & Saqr, Khalid M. & Xiao, Qing & Shehadeh, Mohamed F. & Day, Alexander, 2016. "Performance analysis of wells turbine blades using the entropy generation minimization method," Renewable Energy, Elsevier, vol. 86(C), pages 1123-1133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:13:p:2113-2127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.