IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i12p1865-1880.html
   My bibliography  Save this article

Cost effectiveness of decentralized energy supply systems taking solar and wind utilization plants into account

Author

Listed:
  • Sontag, R
  • Lange, A

Abstract

In this article, results are presented of annual simulations of a decentralized (regional) plant for the power and heat supply of a residential complex. This complex consists of four houses with 40 flats all in all. The annual power consumption of the complex is 157 MWh and the heat requirement is 325 MWh. The concrete dynamics of the energy demands over the year is taken into consideration. The energy supply system is composed of a power-controlled combined heat and power (CHP) plant (55 kW), a photovoltaic plant (PV array or PV plant) array for power generation as well as a field of solar thermal collectors with a short-term accumulator for water heating and a long-term accumulator for supplying heat for domestic heating purposes. Simulation results demonstrate that synergetic effects result from the combination of a CHP plant with wind power and PV plants of varying sizes, which have an effect on the cost effectiveness of the plant as a whole with the different dynamics of energy sources (wind and solar energies) and of the consumption of power and heat being the decisive factors. The power deficits of wind power and PV plants are compensated through the application of a natural gas-operated CHP plant. In almost all variants, the demand for fossil energy carriers is distinctly less than in conventional energy supply plants.

Suggested Citation

  • Sontag, R & Lange, A, 2003. "Cost effectiveness of decentralized energy supply systems taking solar and wind utilization plants into account," Renewable Energy, Elsevier, vol. 28(12), pages 1865-1880.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:12:p:1865-1880
    DOI: 10.1016/S0960-1481(03)00066-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103000661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00066-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    2. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    3. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    4. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    5. Catalina, Tiberiu & Virgone, Joseph & Blanco, Eric, 2011. "Multi-source energy systems analysis using a multi-criteria decision aid methodology," Renewable Energy, Elsevier, vol. 36(8), pages 2245-2252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:12:p:1865-1880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.