IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002915.html
   My bibliography  Save this article

Improving active power regulation for wind turbine by phase leading cascaded error-based active disturbance rejection control and multi-objective optimization

Author

Listed:
  • Li, Xuehan
  • Wang, Wei
  • Fang, Fang
  • Liu, Jizhen
  • Chen, Zhe

Abstract

With the escalating global demand for renewable energy, the active coordinated control of wind turbine is poised to become a crucial factor in ensuring the stable operation of new power system. However, existing coordinated control strategies for permanent magnet wind turbine remain inadequate in addressing the coupling effects between torque control and variable pitch control. These strategies require further development to enhance their effectiveness in practical applications. In response to this challenge, a phase leading cascaded error-based active disturbance rejection control and multi-objective optimization strategy are proposed to determine reference signals for pitch angle and torque, facilitating rapid and stable power command tracking. Firstly, the significant phase lag issue inherent in traditional extended state observer is examined. To improve the precision of system perturbation estimation, a phase leading cascaded error-based active disturbance rejection controller is designed, with its stability is theoretically proven. Secondly, an enhanced snow ablation optimization algorithm is utilized to identify the optimal solution for controller parameters, balancing power tracking accuracy with fatigue load mitigation. Additionally, to address the challenge of calculating fatigue loads during wind turbine operation, a data-driven fatigue modelling method based on bidirectional long and short-term memory is proposed, enabling real-time estimation of fatigue loads. Finally, a simulation model of a 5 MW wind turbine is used to validate the effectiveness of the presented strategy. Experimental results show that the proposed strategy can effectively perform power regulation tasks under three scenarios: power command tracking, actuator fault and model mismatch, while minimizing tracking error and reducing fatigue loads.

Suggested Citation

  • Li, Xuehan & Wang, Wei & Fang, Fang & Liu, Jizhen & Chen, Zhe, 2025. "Improving active power regulation for wind turbine by phase leading cascaded error-based active disturbance rejection control and multi-objective optimization," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002915
    DOI: 10.1016/j.renene.2025.122629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.