IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002174.html
   My bibliography  Save this article

An optimization framework for component sizing and energy management of hybrid electrolyzer systems considering physical characteristics of alkaline electrolyzers and proton exchange membrane electrolyzers

Author

Listed:
  • Tang, Yuzhen
  • Zheng, Zhuoqun
  • Min, Fanqi
  • Xie, Jingying
  • Yang, Hengzhao

Abstract

This paper proposes to produce hydrogen using a hybrid electrolyzer system (HES) incorporating the alkaline electrolyzer (AEL) and the proton exchange membrane electrolyzer (PEMEL) technologies in the context of renewable energy sources (RESs). To solve the component sizing and energy management problems for the HES, this paper develops an optimization framework by taking into account the physical characteristics of AELs and PEMELs. In particular, the operating power range of the AEL is determined based on its hydrogen to oxygen (HTO) threshold (for the lower bound) and overloading capability (for the upper bound). The dynamic response characteristics of AELs and PEMELs as well as supercapacitors are considered in that their dynamic responses are parameterized as affine functions of the RES power fluctuations. The effectiveness of the proposed optimization framework is validated using a case study involving both offline and online simulations. Results show that the system revenue of the HES is the highest (1451.05 ¥) compared to the AEL-only (1411.84 ¥) and PEMEL-only (1254.36 ¥) configurations. The energy efficiency of the HES (108.05%) is significantly higher than that of the AEL-only system (95.97%). Therefore, the HES configuration is both technically and economically feasible and beneficial compared to the AEL-only and PEMEL-only configurations for hydrogen production.

Suggested Citation

  • Tang, Yuzhen & Zheng, Zhuoqun & Min, Fanqi & Xie, Jingying & Yang, Hengzhao, 2025. "An optimization framework for component sizing and energy management of hybrid electrolyzer systems considering physical characteristics of alkaline electrolyzers and proton exchange membrane electrol," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002174
    DOI: 10.1016/j.renene.2025.122555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.