IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002071.html
   My bibliography  Save this article

Capacitive bio–electrocatalyst Mxene@CoMo–ZIF sulfide heterostructure for boosted biofilm electroactivity to enhance renewable energy conversion

Author

Listed:
  • Yang, Liuqingying
  • Wen, Qing
  • Chen, Ye
  • Lin, Cunguo
  • Gao, Haiping
  • Qiu, Zhenghui
  • Pan, Xu

Abstract

Microbial Fuel Cells (MFC), as a technology that utilizes microbial metabolic activity to convert organic matter into electrical energy, has the dual advantage of efficient use of organic matter and renewable energy potential. However, the underdeveloped extracellular electron transfer (EET) between biofilm and anode and its weaker colonization are the main factors limiting the power enhancement and energy conversion in microbial fuel cells (MFCs). Therefore, interfacial properties of catalysts loaded on electrodes are the key to rise these restrictions. In this work, a capacitive bio–electrocatalyst has been successfully prepared through ion exchange and in–situ etching methods to anchored Co9S8–MoS2–CoMo2S4 (CMCS) on few–layered Mxene (MX). MX applied as substrate could effectively inhibit the stacking of CMCS particles and increase reactive sites, EET efficiency and redox reaction rates. Hence, the as–prepared powders were coated on carbon felt utilized as bio–electrocatalyst in MFCs. The MFC with MX@CMCS/CF achieved significant faster start–up time and maximum power density of 6.01 W m−3, higher than that of CMCS (5.34 W m−3), MX@CoMo–ZIF (5.11 W m−3) and CoMo–ZIF (2.74 W m−3). Biofilm community analysis on anode surface indicated that MX@CMC specifically selected the electrogenic bacteria, Desulfuromonas, denoting a more effective electricity production process. The high performance could be attributed to internal resistance reduction of MX@CMCS and promotion of flavin–related protein expression. This study validated the prospective potential of MX and sulfide heterostructure as capacitive bio–electrocatalyst materials for MFCs on power generation, energy regeneration and microbial community structure.

Suggested Citation

  • Yang, Liuqingying & Wen, Qing & Chen, Ye & Lin, Cunguo & Gao, Haiping & Qiu, Zhenghui & Pan, Xu, 2025. "Capacitive bio–electrocatalyst Mxene@CoMo–ZIF sulfide heterostructure for boosted biofilm electroactivity to enhance renewable energy conversion," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002071
    DOI: 10.1016/j.renene.2025.122545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.