IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125001910.html
   My bibliography  Save this article

A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China

Author

Listed:
  • Yu, Chunsheng

Abstract

As an important renewable energy source, wind energy is significant for realizing energy transition and reducing carbon emissions. With the increasing penetration of wind energy in the global energy system, higher prediction accuracy is needed to ensure the safe and stable operation of the power grid. However, the existing wind power prediction methods are constantly pursuing model improvement, ignoring the importance of data quality to the prediction performance, resulting in a stagnation of the upper limit of prediction accuracy. In this paper, we establish a comprehensive wind power prediction system based on correct multi-scale clustering ensemble, similarity matching, and an improved whale optimization algorithm. Firstly, multiple classification algorithms combined with meteorological data are used to correct the extreme scenarios in the clustering results. Secondly, a library of typical fluctuation patterns is established based on the clustering ensemble results, and the optimal training dataset is determined by similarity matching. Finally, complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) is used to extract further the power data’s local features and time–frequency characteristics and to predict the modal components using the improved whale optimization algorithm(IWOA)-optimized BiLSTM network. The results of the three sets of experiments show that the proposed model is able to improve more than 10% in terms of MAE, RMSE, and MAPE compared to other models, and the model robustness is high.

Suggested Citation

  • Yu, Chunsheng, 2025. "A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001910
    DOI: 10.1016/j.renene.2025.122529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.