IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023851.html
   My bibliography  Save this article

Flow field design and parameter optimization of PEMFC based on leaf vein structure

Author

Listed:
  • Xiao, Fei
  • Chen, Tao
  • Gan, zhongyu
  • Lan, Yang
  • Chen, Ziyu

Abstract

The flow field of proton-exchange membrane fuel cell (PEMFC) serves as an important place for reactant transport, and a reasonable flow field design plays an important role in the performance, reliability and durability of the PEMFC. In this paper, a leaf vein type biomimetic flow field was designed based on the leaf vein structure of a tree leaf, and a two-phase steady-state numerical model of PEMFC was established, which provides theoretical support for the optimization of the biomimetic flow field. In order to improve the performance of the PEMFC with biomimetic flow field, a Kriging model was combined with genetic algorithm (GA) and particle swarm optimization (PSO) to achieve a multi-objective optimization of the structural parameters of the flow field. Finally, the performance differences between the optimized biomimetic and conventional flow fields are investigated by experiments. The results showed that the inlet width of main channel the and the angle between the main and secondary channels have a significant effect on the performance of biomimetic flow field, and the performance of the optimized biomimetic flow fields is significantly improved. Comparison with the conventional flow field reveals that the optimized biomimetic flow field has more obvious advantages at high current densities.

Suggested Citation

  • Xiao, Fei & Chen, Tao & Gan, zhongyu & Lan, Yang & Chen, Ziyu, 2025. "Flow field design and parameter optimization of PEMFC based on leaf vein structure," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023851
    DOI: 10.1016/j.renene.2024.122317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.