IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics096014812402264x.html
   My bibliography  Save this article

Numerical analysis and comparison of different serpentine-based photovoltaic-thermal collectors

Author

Listed:
  • Olmuş, Umutcan
  • Güzelel, Yunus Emre
  • Çerçi, Kamil Neyfel
  • Büyükalaca, Orhan

Abstract

This study investigated the performance of 25 serpentine-based photovoltaic-thermal (PVT) collector configurations using numerical modeling with COMSOL Multiphysics software. The analysis compared single-inlet, double-inlet and triple-inlet configurations, with tubes arranged both horizontally and vertically, while maintaining constant geometric properties. Some of the configurations examined were studied for the first time in the open literature. The analyses were conducted in two stages. First, all configurations were compared under base-case conditions using various energetic and exergetic performance metrics. The results revealed that configurations K1 and M, which are novel, and configuration B demonstrated superior performance. Second, the effects of water inlet temperature, flowrate, and solar irradiance on the temperature distribution and efficiency metrics were evaluated for the top three performing configurations. The findings showed that these configurations exhibited similar trends in response to changes in operating conditions. Specifically, increasing the flowrate significantly enhanced thermal, electrical, and primary energy saving efficiencies, while higher water inlet temperatures led to reductions in all efficiency metrics. Moreover, pressure drop decreased as the number of inlets increased. The research emphasizes the importance of selecting a design to enhance the performance of PVT collector based on the various performance metrics.

Suggested Citation

  • Olmuş, Umutcan & Güzelel, Yunus Emre & Çerçi, Kamil Neyfel & Büyükalaca, Orhan, 2025. "Numerical analysis and comparison of different serpentine-based photovoltaic-thermal collectors," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402264x
    DOI: 10.1016/j.renene.2024.122196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402264X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402264x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.