IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124022018.html
   My bibliography  Save this article

Nano zerovalent iron boosts methane content in biogas and reshapes microbial communities in long-term anaerobic digestion of pig slurry

Author

Listed:
  • Cerrillo, Míriam
  • Guivernau, Miriam
  • Burgos, Laura
  • Riau, Victor
  • Bonmatí, August

Abstract

Adding nanoscale zero-valent iron (nZVI) to the anaerobic digestion (AD) process for livestock manure has been shown to significantly enhance methane content by influencing microbial communities and metabolic pathways. However, the long-term effects of nZVI on metabolically active microbial communities remain largely unexplored. This study explored these microbial shifts in nZVI-supplemented AD systems and biogas composition under both mesophilic and thermophilic conditions over extended operation. To this end, three lab-scale continuous stirred tank reactors were operated for 265 days using raw pig slurry as the feedstock. Two mesophilic reactors received 84 mg gSSV−1 of nZVI, while a third thermophilic reactor received 42 mg gSSV−1. High-throughput sequencing and quantitative PCR were employed to monitor changes in bacterial and archaeal communities following nZVI addition. The results demonstrated a notable increase in methane content in the biogas, reaching 88 % in mesophilic and 87 % in thermophilic conditions with nZVI. Microbial responses differed between reactors, including increased copy numbers of metabolically active archaeal mcrA and bacterial 16S rRNA genes, as well as a rise in the relative abundance of specific genera, such as Methanosaeta. These findings underscore the potential of nZVI to enhance AD performance through targeted shifts in microbial community structure and function.

Suggested Citation

  • Cerrillo, Míriam & Guivernau, Miriam & Burgos, Laura & Riau, Victor & Bonmatí, August, 2025. "Nano zerovalent iron boosts methane content in biogas and reshapes microbial communities in long-term anaerobic digestion of pig slurry," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022018
    DOI: 10.1016/j.renene.2024.122133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.