IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124021384.html
   My bibliography  Save this article

Improving the wind energy harvesting performance with double upstream fractal bluff bodies

Author

Listed:
  • Zheng, Tianyu
  • Ren, He
  • Zhang, Zhongcai
  • Li, Haitao
  • Qin, Weiyang
  • Yurchenko, Daniil

Abstract

Fossil energy sources are not renewable and the technology to harness wind energy has gained considerable interest. This work proposes a wake galloping energy harvester with upstream fractal structures to promote the efficiency of wind energy harvesting. The dynamic response and energy harvesting performance of a conventional galloping energy harvester (GEH), a vortex-induced vibration energy harvester (VIVEH), a traditional wake galloping energy harvester with single or double upstream cuboids (WGEH-SC, WGEH-DC), and a wake galloping energy harvester with single or double fractal upstream structures (WGEH-SF, WGEH-DF) are evaluated numerically and experimentally. At a wind speed of 5.0 m/s, WGEH-DF increases the maximum root mean square (RMS) voltage from 19.36 V to 39.25 V, indicating an improvement of 102.7 % compared to the VIVEH. Meanwhile, the effects of the positions and windward angles of the upstream bluff bodies are discussed, and the WGEH-DF reaches its maximum average RMS voltage at an angle of 75° and x = 2 cm. It is found that when two fractal bluff bodies are placed upstream, the pressure difference increases on both sides of the downstream bluff body and the structural vibration becomes more violent. By comparing the pressure behind the two cuboids and two fractal bluff bodies, it is demonstrated that the negative pressure behind the fractal bluff bodies is increased. The flow field analysis further explains the aerodynamic mechanism that the fractal bluff bodies placed upstream improve energy harvesting performance.

Suggested Citation

  • Zheng, Tianyu & Ren, He & Zhang, Zhongcai & Li, Haitao & Qin, Weiyang & Yurchenko, Daniil, 2025. "Improving the wind energy harvesting performance with double upstream fractal bluff bodies," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021384
    DOI: 10.1016/j.renene.2024.122070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124021384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.