IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124021232.html
   My bibliography  Save this article

Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models

Author

Listed:
  • Bashir, Tasarruf
  • Wang, Huifang
  • Tahir, Mustafa
  • Zhang, Yixiang

Abstract

Accurate prediction of solar and wind power output is crucial for effective integration into the electrical grid. Existing methods, including conventional approaches, machine learning (ML), and hybrid models, have limitations such as limited adaptability, narrow generalizability, and difficulty in forecasting multiple types of renewable energy respectively. To address these challenges, this study introduces two novel hybrid models: the CNN-ABiLSTM, which integrates Convolutional Neural Networks (CNN) with Attention-based Bidirectional Long Short-Term Memory (ABiLSTM), and the CNN-Transformer-MLP, which integrates CNN with Transformers and Multi-Layer Perceptrons (MLP). In both hybrid models, the CNN captures short-term patterns in solar and wind power data, while the ABiLSTM and Transformer-MLP models address the long-term patterns. CNN, BiLSTM, and Encoder-based Transformer were taken as baseline standalone models. The proposed hybrid models and standalone baseline models were trained on quarter-hour-based real-time data. The hybrid models outperform standalone baseline models in day, week, and month-ahead forecasting. The CNN-Transformer-MLP hybrid provides more accurate day and week-ahead solar and wind power predictions with lower mean absolute error (MAE), root mean square error (RMSE), and mean square error (MSE) values. For month-ahead forecasts, the CNN-ABiLSTM hybrid excels in wind power prediction, demonstrating its strength in long-term forecasting.

Suggested Citation

  • Bashir, Tasarruf & Wang, Huifang & Tahir, Mustafa & Zhang, Yixiang, 2025. "Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021232
    DOI: 10.1016/j.renene.2024.122055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124021232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.