IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019074.html
   My bibliography  Save this article

Decomposition analysis of renewable energy demand and coupling effect between renewable energy and energy demand: Evidence from China

Author

Listed:
  • Zhang, Xiaoyi
  • Zhang, Rui
  • Feng, Cuiyang
  • Wang, Yue
  • Zhao, Meilin
  • Zhao, Xin

Abstract

Driving up demand for renewable energy is key to China's response to the energy crisis and to controlling carbon emissions. Several studies have been conducted to explore the factors affecting renewable energy demand. However, the literature on the importance of technological innovation in fossil energy production in affecting renewable energy demand is scant. Therefore, it is essential to explore the impact of technological innovations in fossil energy production on renewable energy demand, as well as to reveal the dynamic penetration mechanism of renewable energy in the field of energy demand, to provide policy guidelines for China to promote its energy revolution. This study decomposes renewable energy demand into 10 drivers with the extended IDA-PDA (Index Decomposition Analysis and Production-theory Decomposition Analysis) model. Then the dynamic penetration mechanism of renewable energy on the energy demand side is revealed by combining the coupled model and the decomposition results. The results show that the investment intensity effects and energy restructuring contributed the most to renewable energy demand growth, contributing 60.73 % and 79.97 % respectively. Conversely, technological advances in fossil energy combustion made the largest negative cumulative contribution to renewable energy demand growth, with a cumulative negative contribution of −39.57 %. The drivers of renewable energy demand vary considerably across types, regions and resource endowment levels, which means that regions should develop differentiated development strategies based on their own characteristics. In addition, the coupling effect between renewable energy demand and total energy demand is weakening, with market and policy effects becoming the drivers for augmenting the response of renewable energy to total energy demand. The findings of this study provide clear pathways for expanding renewable energy demand, offering important insights for the government to balance between promoting capital-driven interests and policy-driven development.

Suggested Citation

  • Zhang, Xiaoyi & Zhang, Rui & Feng, Cuiyang & Wang, Yue & Zhao, Meilin & Zhao, Xin, 2024. "Decomposition analysis of renewable energy demand and coupling effect between renewable energy and energy demand: Evidence from China," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019074
    DOI: 10.1016/j.renene.2024.121839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.