IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs096014812401797x.html
   My bibliography  Save this article

A generalized modelling approach to performance analysis of radiative sky cooling with complicated configurations and external environments

Author

Listed:
  • Dan, Ya
  • Hu, Mingke
  • Su, Yuehong
  • Riffat, Saffa

Abstract

Radiative sky cooling (RC), capable of self-cooling to sub-ambient temperatures by radiatively dissipating heat to the frigid outer space without energy input. Existing modelling approaches characterizing RC performance often assume the RC emitter is exposed to an unobstructed view of the cold sky, neglecting the complex radiative heat interactions between the emitter and its local warm surroundings. This oversight leads to a deviation in RC performance prediction. To address this issue, a straightforward and universal modelling approach is developed to characterize the emitter's radiative heat exchange with both the sky and immediate surroundings, mirroring real-world conditions. Results indicate that, in an obstacle-free environment, the cooling power of the two-dimensional inverted trapezoidal-RC module with a flat emitter is increased by 10.70% compared to the traditional flat-RC module. However, using the trapezoidal-RC module with a 60° inclined V-shaped emitter leads to a decrease in cooling performance to 75.80% of the module with a flat emitter. Additionally, when changing the local surroundings, the approach can still distinguish the cooling performance difference on RC modules under different sky dome coverage ratios. This modelling approach offers a strategy for precisely characterizing RC module's cooling capacities, demonstrating the potential for discerning RC performance differences in complex scenarios.

Suggested Citation

  • Dan, Ya & Hu, Mingke & Su, Yuehong & Riffat, Saffa, 2024. "A generalized modelling approach to performance analysis of radiative sky cooling with complicated configurations and external environments," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401797x
    DOI: 10.1016/j.renene.2024.121729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401797X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Zhen Chen & Linxiao Zhu & Aaswath Raman & Shanhui Fan, 2016. "Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    3. Zhang, Yelin & Tso, Chi Yan & Tse, Chung Fai Norman & Fong, Alan Ming-Lun & Lin, Kaixin & Sun, Yongjun, 2024. "A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate," Renewable Energy, Elsevier, vol. 220(C).
    4. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    5. Yang, Rui & Niu, Dong & Pu, Jin Huan & Tang, G.H. & Wang, Xinyu & Du, Mu, 2022. "Passive all-day freshwater harvesting through a transparent radiative cooling film," Applied Energy, Elsevier, vol. 325(C).
    6. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.
    7. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    8. Bikram Bhatia & Arny Leroy & Yichen Shen & Lin Zhao & Melissa Gianello & Duanhui Li & Tian Gu & Juejun Hu & Marin Soljačić & Evelyn N. Wang, 2018. "Passive directional sub-ambient daytime radiative cooling," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    9. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
    10. Hanif, M. & Mahlia, T.M.I. & Zare, A. & Saksahdan, T.J. & Metselaar, H.S.C., 2014. "Potential energy savings by radiative cooling system for a building in tropical climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 642-650.
    11. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    4. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    7. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    8. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    9. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    10. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Wang, Yunyun & Pei, Gang, 2018. "Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study," Energy, Elsevier, vol. 155(C), pages 360-369.
    11. Wong, Ross Y.M. & Tso, C.Y. & Jeong, S.Y. & Fu, S.C. & Chao, Christopher Y.H., 2023. "Critical sky temperatures for passive radiative cooling," Renewable Energy, Elsevier, vol. 211(C), pages 214-226.
    12. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    13. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    15. Lv, Song & Sun, Xinyi & Zhang, Bolong & Lai, Yin & Yang, Jiahao, 2024. "Research on the influence and optimization of sunshade effect on radiative cooling performance," Energy, Elsevier, vol. 297(C).
    16. Zhao, Bin & Xuan, Qingdong & Xu, Chengfeng & Hu, Mingke & Dabwan, Yousef N. & Pei, Gang, 2023. "Considerations of passive radiative cooling," Renewable Energy, Elsevier, vol. 219(P2).
    17. Zhao, Dongliang & Martini, Christine Elizabeth & Jiang, Siyu & Ma, Yaoguang & Zhai, Yao & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2017. "Development of a single-phase thermosiphon for cold collection and storage of radiative cooling," Applied Energy, Elsevier, vol. 205(C), pages 1260-1269.
    18. Dan, Ya & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Riffat, Saffa, 2024. "Comprehensive evaluation of integrating radiative sky cooling with compound parabolic concentrator for cooling flux amplifying," Energy, Elsevier, vol. 312(C).
    19. Wong, Ross Y.M. & Tso, C.Y. & Chao, Christopher Y.H., 2021. "Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system," Renewable Energy, Elsevier, vol. 180(C), pages 700-711.
    20. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401797x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.