IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017488.html
   My bibliography  Save this article

Comprehensive evaluation of the physicochemical properties and pyrolysis mechanism of products from the slow pyrolysis of waste coffee shells

Author

Listed:
  • Gan, Xiaowei
  • Chen, Zhengjie
  • Ma, Wenhui
  • Luo, Pen
  • Xie, Rui

Abstract

Slow pyrolysis is an efficient method for converting agricultural and forestry wastes into valuable resources, thereby addressing energy shortage and environmental pollution. In this study, a slow-pyrolysis experiment of coffee shells (CS) at 450–850 °C was conducted in a tube furnace. The resulting pyrolysis products were comprehensively characterized via FTIR, Raman spectroscopy, nitrogen adsorption analysis via BET theory, SEM, XPS, and PY-GC-MS. Moreover, the pyrolysis reaction mechanism and N transformation pathway of CS were proposed. The results showed that with the increase in pyrolysis temperature, the yield of biochar gradually decreased, and the yield of biogas gradually increased. At 850 °C, the yields of biochar, bio-oil and biogas of CS were 27.13, 35.16 and 37.71 %, respectively (on a dry, ash-free basis). The bio-oil yield was highest at 550 °C, reaching 35.7 %. Notably, biochar exhibited favorable characteristics such as high specific surface area and porosity, demonstrating its potential as both a biomass fuel and an adsorption material. Acetone (78.30 %) and caffeine (8.29 %) was the predominant substance in bio-oil. Biogas was predominantly composed of CO2, CO, CH4 and H2. The pyrolysis process of CS mainly involved the degradation of macromolecules into small molecules, the repyrolysis of small molecules, dehydrogenation, deoxygenation, alkylation, isomerization, and self-condensation. These results provide a theoretical basis for the recycling of waste biomass CS, which has environmental protection significance and economic value.

Suggested Citation

  • Gan, Xiaowei & Chen, Zhengjie & Ma, Wenhui & Luo, Pen & Xie, Rui, 2024. "Comprehensive evaluation of the physicochemical properties and pyrolysis mechanism of products from the slow pyrolysis of waste coffee shells," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017488
    DOI: 10.1016/j.renene.2024.121680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.