IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009340.html
   My bibliography  Save this article

Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage

Author

Listed:
  • Collado-Capell, Carlos
  • Menon, Akanksha K.

Abstract

This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to induce phase separation of liquid water from the IL. This regeneration step can be achieved by integrating FO with low-grade solar energy, which is abundant in regions that face severe water scarcity. A system design is presented that couples an FO membrane module with a compound parabolic concentrator solar collector and thermal energy storage to minimize solar intermittency and produce clean water at a distributed scale of 10 m3/day. To determine the optimal sizing of components in the system, a technoeconomic analysis using the TRNSYS software is performed with the goal of minimizing the levelized cost of water (LCOW). Notably, over 96 % of the energy required for regeneration comes from solar energy and/or the thermal energy storage (TES) in all cases, with auxiliary heat from electricity being used to maintain a continuous process. To evaluate the potential of solar-FO in three different locations within the United States, a case study is presented for Phoenix, AZ; San Diego, CA; and Atlanta, GA. The simulation results reveal that for a small-scale desalination system, LCOW values as low as $1.31/m3 can be attained, with the potential to approach $1/m3 by lowering the costs of the solar collector and FO module based on a sensitivity analysis.

Suggested Citation

  • Collado-Capell, Carlos & Menon, Akanksha K., 2024. "Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009340
    DOI: 10.1016/j.renene.2024.120866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.