IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017639.html
   My bibliography  Save this article

Beneficiation of paper-pulp industrial wastewater for improved outdoor biomass cultivation and biodiesel production using Tetradesmus obliquus (Turpin) Kützing

Author

Listed:
  • Bagchi, Sourav Kumar
  • Patnaik, Reeza
  • Rawat, Ismail
  • Prasad, Ramasare
  • Bux, Faizal

Abstract

Algae-based wastewater bioremediation offers a cost-effective method for sustainably treating wastewater while simultaneously addressing global water scarcity and pollution. This study highlights the benefits of treating primary-treated (PTW) and secondary-treated (STW) paper-pulp industrial wastewaters using the microalga Tetradesmus obliquus (Turpin) Kützing. A batch culture study revealed that 50 % secondary treated wastewater can increase the biomass yield 1.8 fold to 2.51 g L−1 in 15 days with a corresponding lipid yield of 390.2 mg L−1. Upscaling this work in 200 L open raceway ponds with 50 % STW as the growth medium showed areal biomass and lipid productivities of 26.80 and 3.90 g m−2 day−1, respectively, in 15 days at 20 cm culture depth. This translates to a projected high annual biomass productivity of approximately 85.0 tons hectare−1 year−1 based on datasets spanning two consecutive years. Bioremediation efficiencies of 80.0 %, 91.51 %, and 92.10 % were achieved for COD, TOC, and NH4+ respectively. Biodiesel produced showed a large percentage of saturated and monounsaturated fatty acids (∼90 %) and its fuel properties complied with the global biodiesel standards. This study thus shows that using paper-pulp industrial wastewater for algal growth offers a sustainable solution for energy generation and wastewater treatment, with significant implications for environmental sustainability.

Suggested Citation

  • Bagchi, Sourav Kumar & Patnaik, Reeza & Rawat, Ismail & Prasad, Ramasare & Bux, Faizal, 2024. "Beneficiation of paper-pulp industrial wastewater for improved outdoor biomass cultivation and biodiesel production using Tetradesmus obliquus (Turpin) Kützing," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017639
    DOI: 10.1016/j.renene.2023.119848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonkar, Sashi & Tiwari, Rahul & Devadiga, Sagar & Koley, Shankha & Mallick, Nirupama, 2023. "Cultivation of Chlorella minutissima under a novel phosphate application strategy for biodiesel production: A pilot scale study," Renewable Energy, Elsevier, vol. 217(C).
    2. Sawant, S.S. & Gosavi, S.N. & Khadamkar, H.P. & Mathpati, C.S. & Pandit, Reena & Lali, A.M., 2019. "Energy efficient design of high depth raceway pond using computational fluid dynamics," Renewable Energy, Elsevier, vol. 133(C), pages 528-537.
    3. Bagchi, Sourav Kumar & Patnaik, Reeza & Sonkar, Sashi & Koley, Shankha & Rao, P. Srinivasa & Mallick, Nirupama, 2019. "Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing GA 45 under closed raceway pond cultivation," Renewable Energy, Elsevier, vol. 139(C), pages 976-987.
    4. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    5. Baldev, Edachery & Mubarakali, Davoodbasha & Saravanakumar, Kandasamy & Arutselvan, Chithirai & Alharbi, Naiyf S. & Alharbi, Sulaiman Ali & Sivasubramanian, Velusamy & Thajuddin, Nooruddin, 2018. "Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment," Renewable Energy, Elsevier, vol. 123(C), pages 486-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonkar, Sashi & Tiwari, Rahul & Devadiga, Sagar & Koley, Shankha & Mallick, Nirupama, 2023. "Cultivation of Chlorella minutissima under a novel phosphate application strategy for biodiesel production: A pilot scale study," Renewable Energy, Elsevier, vol. 217(C).
    2. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    3. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    4. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Srivatsa, Srikanth Chakravartula & Li, Fanghua & Bhattacharya, Sankar, 2019. "Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: Influence of Ni-loading on the bio-oil composition," Renewable Energy, Elsevier, vol. 142(C), pages 426-436.
    6. Sawant, S.S. & Gosavi, S.N. & Khadamkar, H.P. & Mathpati, C.S. & Pandit, Reena & Lali, A.M., 2019. "Energy efficient design of high depth raceway pond using computational fluid dynamics," Renewable Energy, Elsevier, vol. 133(C), pages 528-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.