IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v21y2000i1p1-22.html
   My bibliography  Save this article

Design and optimisation of a combination solar collector–thermal engine operating on Mars

Author

Listed:
  • Badescu, Viorel
  • Popescu, Gheorghe
  • Feidt, Michel

Abstract

A “dynamic” solar power plant (which consists of a solar collector–thermal engine combination) is proposed as an alternative for the more usual photovoltaic cells. A model for heat losses in a selective flat-plate solar collector operating on Mars is developed. An endoreversible Carnot cycle is used to describe heat engine operation. This provides upper limits for real performances. The output power is maximized. Meteorological and actinometric data provided by Viking Landers are used as inputs. Two strategies of collecting solar energy were considered: (i) horizontal collector; (ii) collector tilt and orientation are continuously adjusted to keep the receiving surface perpendicular on the Sun’s rays. The influences of climate and of various design parameters on solar collector heat losses, on engine output power and on the optimum sun-to-user efficiency are discussed.

Suggested Citation

  • Badescu, Viorel & Popescu, Gheorghe & Feidt, Michel, 2000. "Design and optimisation of a combination solar collector–thermal engine operating on Mars," Renewable Energy, Elsevier, vol. 21(1), pages 1-22.
  • Handle: RePEc:eee:renene:v:21:y:2000:i:1:p:1-22
    DOI: 10.1016/S0960-1481(99)00129-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148199001299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00129-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yue & Lin, Bihong & Chen, Jincan, 2007. "Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency," Renewable Energy, Elsevier, vol. 32(5), pages 856-867.
    2. Badescu, Viorel, 2001. "Inference of atmospheric optical depth from near-surface meteorological parameters on Mars," Renewable Energy, Elsevier, vol. 24(1), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:21:y:2000:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.