IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014453.html
   My bibliography  Save this article

Influence of water hammer effect on low frequency oscillation of grid-connected hydropower station system

Author

Listed:
  • Liu, Zhe
  • Yu, Xiaodong
  • Pérez-Díaz, Juan I.
  • Liu, Yi
  • Martínez-Lucas, Guillermo

Abstract

This paper aims to investigate the influence of the water hammer effect on low-frequency oscillations (LFO) in power systems, mainly quantifying and revealing the characteristics of hydraulic damping of LFO. The models of the grid-connected hydropower stations considering the water column elasticity (elastic model) and without considering it (rigid model) are respectively established and used as time domain validation models. The corresponding analytical formulas for the mechanical damping torque coefficients (MDTC) are derived to obtain the system's damping frequency characteristics. Finally, a method for quantifying the nonlinear system's damping is proposed. The results show that due to the effect of the water hammer wave, the system's damping frequency characteristics have changed, and damping peaks and valleys appear. The corresponding frequencies are determined by the frequency of the water hammer wave. The system has a critical oscillation frequency. When the frequency of LFO is below the critical frequency, water column elasticity must be considered. When the frequency of LFO is consistent with the frequency of the water hammer wave, the negative damping reaches its maximum. Finally, the proposed quantitative method was used to clarify the influence of the water hammer effect on the system's damping characteristics while considering nonlinear head loss.

Suggested Citation

  • Liu, Zhe & Yu, Xiaodong & Pérez-Díaz, Juan I. & Liu, Yi & Martínez-Lucas, Guillermo, 2023. "Influence of water hammer effect on low frequency oscillation of grid-connected hydropower station system," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014453
    DOI: 10.1016/j.renene.2023.119530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    2. Zhang, Jingjing & Mahmud, Apel & Govaerts, Willy & Chen, Diyi & Xu, Beibei & Xiong, Hualin, 2020. "Sensitivity analysis and low frequency oscillations for bifurcation scenarios in a hydraulic generating system," Renewable Energy, Elsevier, vol. 162(C), pages 334-344.
    3. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    4. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    5. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    6. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    7. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Zhiyong & Lei, Gang & Liang, Wenqing & Huang, Lei & Che, Bangxiang & Zheng, Xiaohong & Qian, Hua, 2024. "Rapid prediction of water hammer characteristics in liquid hydrogen storage and transportation systems: A theoretical model," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang, 2022. "Influence of water diversion system topologies and operation scenarios on the damping characteristics of hydropower units under ultra-low frequency oscillations," Energy, Elsevier, vol. 239(PE).
    2. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    3. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    4. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    6. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    7. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    8. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    9. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    10. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    11. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    12. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    13. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    14. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    15. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    16. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    17. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    18. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.
    19. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    20. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.