IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v20y2000i2p195-206.html
   My bibliography  Save this article

Performance analysis of a direct-contact thermal energy storage-solidification

Author

Listed:
  • Kiatsiriroat, T.
  • Tiansuwan, J.
  • Suparos, T.
  • Na Thalang, K.

Abstract

Performance of a direct-contact latent heat energy storage during discharging process has been investigated. The storage medium used is sodium thiosulphate pentahydrate of which the melting temperature is 48°C and the heat exchanging fluid is heat transfer oil. An empirical expression to evaluate the volumetric heat transfer coefficient has been carried out. A lumped analysis is also found to be quite suitable to analyze the temperature of the storage medium and its solid fraction including the temperature of the oil leaving the storage. The results agree well with those of the experiments.

Suggested Citation

  • Kiatsiriroat, T. & Tiansuwan, J. & Suparos, T. & Na Thalang, K., 2000. "Performance analysis of a direct-contact thermal energy storage-solidification," Renewable Energy, Elsevier, vol. 20(2), pages 195-206.
  • Handle: RePEc:eee:renene:v:20:y:2000:i:2:p:195-206
    DOI: 10.1016/S0960-1481(99)00110-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014819900110X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00110-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Das, Biplab & Mondol, Jayanta Deb & Negi, Sushant & Smyth, Mervyn & Pugsley, Adrian, 2021. "Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector," Renewable Energy, Elsevier, vol. 164(C), pages 990-1004.
    3. Yuqing Tang & Neng Zhu & Siqi Li & Yingzhen Hou, 2023. "Experimental and Numerical Optimization Study on Performance of Phase-Change Thermal Energy Storage System," Energies, MDPI, vol. 16(10), pages 1-39, May.
    4. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    5. Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
    6. Tian, Shen & Ma, Jiahui & Shao, Shuangquan & Tian, Qingfeng & Wang, Zhiqiang & Zhang, Zheyu & Hu, Kaiyong, 2024. "Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:20:y:2000:i:2:p:195-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.