IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp89-100.html
   My bibliography  Save this article

Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films

Author

Listed:
  • Nhan Nguyen, Thi Nghi
  • Chang, Kao-Shuo

Abstract

This paper reports the fabrication of p-BiFeO3 (BFO)–n-ZnO composite films on tin-doped indium oxide substrates through a facile hydrothermal method and the tuning of various functional properties of single-crystalline BFO and ZnO for piezoelectricity-enhanced multiapplications. BFO microplates were embedded in ZnO nanorod arrays; the clear interfaces indicated the robust formation of the heterojunction, which was also confirmed through X-ray photoelectron spectroscopy. The conductivity type of the BFO and ZnO was determined through Mott–Schottky, open-circuit potential, and photoelectrochemical measurements. Moreover, the induced piezopotential distributions of the samples were theoretically simulated, and the piezotronics, piezophototronics, and Schottky behavior of the composites were determined. The composite-based piezoelectric nanogenerators exhibited durable output and excellent sensitivity, enabling practical sensor applications. Excellent piezophotodegradation with a rate constant of approximately 3 × 10−2 min−1 for the composite was attributable to predominant ·O2− radicals. The maximum applied bias photon-to-current efficiency and piezophotoelectrochemical current density were approximately 0.86% (at 0.63 V vs. Ag/AgCl) and 1.4 mA cm−2, respectively. The multiapplications of the p–n junction composites were primarily attributable to the enhanced piezoelectric coefficient (d33 ≈ 27.3 pm·V−1), favorable electrochemical surface area (≈69.8 mF cm−2 mg−1), prolonged charge carrier lifetime, weak photoluminescence, and suitable band positions and piezopotential-induced band bending.

Suggested Citation

  • Nhan Nguyen, Thi Nghi & Chang, Kao-Shuo, 2022. "Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films," Renewable Energy, Elsevier, vol. 197(C), pages 89-100.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:89-100
    DOI: 10.1016/j.renene.2022.07.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2021. "Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity," Renewable Energy, Elsevier, vol. 163(C), pages 1569-1579.
    2. Xu, Shenming & Jiang, Jiangang & Ren, Wenyi & Wang, He & Zhang, Rui & Xie, Yingge & Chen, Yubin, 2020. "Construction of ZnO/CdS three-dimensional hierarchical photoelectrode for improved photoelectrochemical performance," Renewable Energy, Elsevier, vol. 153(C), pages 241-248.
    3. Toroń, Bartłomiej & Mistewicz, Krystian & Jesionek, Marcin & Kozioł, Mateusz & Zubko, Maciej & Stróż, Danuta, 2022. "A new hybrid piezo/triboelectric SbSeI nanogenerator," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajiali, Mahboube & Farhadian, Mehrdad & khosravi, Mohsen, 2024. "Evaluation of a novel continuous baffled photo-reactor for tetracycline degradation and simultaneous electricity production in photocatalytic fuel cell," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2020. "Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 156(C), pages 173-182.
    2. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2021. "Electric polarization tune enhanced photoelectrochemical performance of visible light active ferroelectric Bi0.5Na0.5TiO3 nanostructure photoanode," Renewable Energy, Elsevier, vol. 180(C), pages 186-192.
    3. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2021. "Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity," Renewable Energy, Elsevier, vol. 163(C), pages 1569-1579.
    4. Liu, Yuhong & Zhu, Tianyu & Lin, Mingjuan & Liang, Yujie & Fu, Junli & Wang, Wenzhong, 2021. "Nonmetal plasmonic TiN nanoparticles significantly boost photoelectrochemical performance for hydrogen evolution of CdS nanoroad array photoanode," Renewable Energy, Elsevier, vol. 180(C), pages 1290-1299.
    5. Mojaddami, Majdoddin & Simchi, Abdolreza, 2020. "Robust water splitting on staggered gap heterojunctions based on WO3∖WS2–MoS2 nanostructures," Renewable Energy, Elsevier, vol. 162(C), pages 504-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:89-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.