IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp134-162.html
   My bibliography  Save this article

Integrated long-term planning of conventional and renewable energy sources in Iran's off-grid networks

Author

Listed:
  • Sadeghi, Hooman
  • Toghraie, Davood
  • Moazzami, Majid
  • Rezaei, Mohammad Mahdi
  • Dolatshahi, Milad

Abstract

In this study, a combined power supply system consisting of renewable solar and wind energies with backup and storage equipment including a diesel generator and a Battery Energy Storage System (BESS) with Demand Response (DR) was integrated and optimized, and optimally enhanced the reliability of the sustainable supply of the load demand. This study aimed at investigating the optimization and evaluation of the cost and advantage of combined systems for off-grid power supply in four regions with different climatic conditions in Iran, including Zahedan, Kerman, Birjand, and Hamedan. The simulation results showed that for Zahedan, the cost per kilowatt-hour (kWh) of electricity with one day of autonomy and a maximum LPSP of 5% is $ 0.312 per kWh in the first year. By optimizing and altering LPSP and the optimal number of days of autonomy under various operating conditions, the capacity of the batteries was decreased from 3870 kWh (38%) to 1860 kWh (22%), which is almost half of the previous value. Furthermore, the cost per kWh of electricity in the first year decreased from $0.312 to $0.256. According to the results, such a hybrid system is cheaper than installing each of the solar, wind, or diesel generators separately. The conditions of the other three regions were then examined and analyzed and the results showed a direct correlation between the cost of electricity and the climatic conditions of each region. However, in general, considering the Levelized Cost of Energy (LCOE) with a RE hybrid energy system for many areas away from the grid in Iran and due to climatic conditions and the trend of reducing the final cost, the utilization of renewable energy sources is economically competitive with the main grid and technically feasible. It also can meaningfully diminish environmental pollutants in line with the objectives of the Paris Agreement.

Suggested Citation

  • Sadeghi, Hooman & Toghraie, Davood & Moazzami, Majid & Rezaei, Mohammad Mahdi & Dolatshahi, Milad, 2022. "Integrated long-term planning of conventional and renewable energy sources in Iran's off-grid networks," Renewable Energy, Elsevier, vol. 182(C), pages 134-162.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:134-162
    DOI: 10.1016/j.renene.2021.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nazri, Nurul Syakirah & Fudholi, Ahmad & Bakhtyar, Bardia & Yen, Chan Hoy & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2018. "Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 187-197.
    2. Rahmad Syah & Afshin Davarpanah & Marischa Elveny & Amir Ghasemi & Dadan Ramdan, 2021. "The Economic Evaluation of Methanol and Propylene Production from Natural Gas at Petrochemical Industries in Iran," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    3. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    4. Haratian, Mojtaba & Tabibi, Pouya & Sadeghi, Meisam & Vaseghi, Babak & Poustdouz, Amin, 2018. "A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran," Renewable Energy, Elsevier, vol. 125(C), pages 926-935.
    5. Rajkumar, R.K. & Ramachandaramurthy, V.K. & Yong, B.L. & Chia, D.B., 2011. "Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy," Energy, Elsevier, vol. 36(8), pages 5148-5153.
    6. Kittner, Noah & Gheewala, Shabbir H. & Kammen, Daniel M., 2016. "Energy return on investment (EROI) of mini-hydro and solar PV systems designed for a mini-grid," Renewable Energy, Elsevier, vol. 99(C), pages 410-419.
    7. Ewaz Ali Hussaini & Dawlat Shah Poyesh & M. Eshaq Rasikh & Hussain Zarie, 2021. "Study on approaches of revitalization, optimization and usability of green spaces of Kabul province from the perspective of users," International Journal of Innovative Research and Scientific Studies, Innovative Research Publishing, vol. 4(3), pages 152-162.
    8. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    2. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    3. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    4. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    5. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    6. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    7. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    9. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    10. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    11. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
    12. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    13. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    15. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    16. Angalaeswari Sendraya Perumal & Jamuna Kamaraj, 2020. "Coordinated Control of Aichi Microgrid for Efficient Power Management Using Novel Set Point Weighting Iterative Learning Controller," Energies, MDPI, vol. 13(3), pages 1-22, February.
    17. Assaf, Jihane & Shabani, Bahman, 2019. "A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness," Renewable Energy, Elsevier, vol. 138(C), pages 509-520.
    18. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    19. Cong, Lin William & Li, Ye & Wang, Neng, 2022. "Token-based platform finance," Journal of Financial Economics, Elsevier, vol. 144(3), pages 972-991.
    20. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:134-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.