IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v170y2021icp118-132.html
   My bibliography  Save this article

Investigation on the effect of forward skew angle blade on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model

Author

Listed:
  • Ye, Weixiang
  • Ikuta, Akihiro
  • Chen, Yining
  • Miyagawa, Kazuyoshi
  • Luo, Xianwu

Abstract

A mixed flow pump is regarded as an important power facility in the hydropower field for renewable energy. Pump impeller design shows a great attempt to alleviate the hump characteristic and suppress the severe pressure fluctuations as the mixed flow pumps operate under part-load conditions. In this respect, an advanced turbulence model, i.e., modified SST k-ω partially averaged Navier-Stokes (MSST PANS) model, was adopted to numerically investigate the effect of forward skew angle blade on the hump characteristic using different impeller blades. Both experimental and numerical results indicate that the pump with forward skew angle blade shifts the hump region to the deeper part-load region. In the pump impeller with the forward skew angle blades, a synchronous stall cell is observed near the blade leading edge and near the hub side, while typical rotating stall cell evolution is observed in the conventional pump impeller. Analysis on the blade loading also indicates that under the unstable condition, the forward skew angle blade could switch the mid-loaded distribution to the fore-loaded distribution. Finally, the low frequency pressure fluctuations induced by the rotating stall cell evolution could be also eliminated successfully as the forward skew angle impeller blades are adopted.

Suggested Citation

  • Ye, Weixiang & Ikuta, Akihiro & Chen, Yining & Miyagawa, Kazuyoshi & Luo, Xianwu, 2021. "Investigation on the effect of forward skew angle blade on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model," Renewable Energy, Elsevier, vol. 170(C), pages 118-132.
  • Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:118-132
    DOI: 10.1016/j.renene.2021.01.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    2. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    3. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:170:y:2021:i:c:p:118-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.