IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp290-304.html
   My bibliography  Save this article

Assessment of blade element actuator disk method for simulations of ducted tidal turbines

Author

Listed:
  • Baratchi, F.
  • Jeans, T.L.
  • Gerber, A.G.

Abstract

The blade element actuator disk (BEAD) method, due to its relatively low computational cost, is a good choice for in-situ simulations of tidal turbines. In this work, the performance of the BEAD method for simulating ducted tidal turbines is investigated and its advantages and disadvantages, in comparison with the actuator line (AL) method, are discussed. The assessment is performed by simulating two ducted tidal turbines using a GPU-based CFD solver. The first turbine, the Clean Current ducted tidal turbine, has a tip clearance equal to 1% of its span. This turbine is simulated at different tip speed ratios (TSRs) and predicted normalized power and thrust coefficients are compared with experiment and the AL method. At TSR = 5, the difference between normalized power and thrust coefficients obtained from the BEAD method and the experiment are 3.2% and 0.8%, respectively. The second turbine is the turbine studied by Cresswell et al., has a relatively high tip clearance of 5% of its span, and is simulated at its design TSR. Contrary to the Clean Current turbine, the BEAD method does not perform as well for this turbine, where the difference between the power coefficients obtained from the BEAD method and experiment is 18.2%.

Suggested Citation

  • Baratchi, F. & Jeans, T.L. & Gerber, A.G., 2020. "Assessment of blade element actuator disk method for simulations of ducted tidal turbines," Renewable Energy, Elsevier, vol. 154(C), pages 290-304.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:290-304
    DOI: 10.1016/j.renene.2020.02.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:290-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.