Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.01.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Liang & Wang, Jing & Liu, Xudong & Shu, Xiaoqing & Zhang, Zhaohong & Wang, Jun, 2019. "Fabrication of Z-scheme photocatalyst, Er3+:Y3Al5O12@NiGa2O4-MWCNTs-WO3, and visible-light photocatalytic activity for degradation of organic pollutant with simultaneous hydrogen evolution," Renewable Energy, Elsevier, vol. 138(C), pages 474-488.
- Zhu, Rongshu & Tian, Fei & Yang, Ruijie & He, Jiansheng & Zhong, Jian & Chen, Baiyang, 2019. "Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light," Renewable Energy, Elsevier, vol. 139(C), pages 22-27.
- Yangen Zhou & Yongfan Zhang & Mousheng Lin & Jinlin Long & Zizhong Zhang & Huaxiang Lin & Jeffrey C.-S. Wu & Xuxu Wang, 2015. "Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
- Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
- Laura Clarizia & Danilo Russo & Ilaria Di Somma & Roberto Andreozzi & Raffaele Marotta, 2017. "Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials," Energies, MDPI, vol. 10(10), pages 1-21, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fatine Drhimer & Maryem Rahmani & Boutaina Regraguy & Souad El Hajjaji & Jamal Mabrouki & Abdeltif Amrane & Florence Fourcade & Aymen Amine Assadi, 2023. "Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
- Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
- Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Banerjee, Debarun & Kushwaha, Nidhi & Shetti, Nagaraj P. & Aminabhavi, Tejraj M. & Ahmad, Ejaz, 2022. "Green hydrogen production via photo-reforming of bio-renewable resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Yuxue Zhou & Xiangdong Meng & Ling Tong & Xianghua Zeng & Xiaobing Chen, 2016. "Template-Free Fabrication of Bi 2 WO 6 Hierarchical Hollow Microspheres with Visible-Light-Driven Photocatalytic Activity," Energies, MDPI, vol. 9(10), pages 1-11, September.
- Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
- Niaz Ali Khan & Chandra S. Azad & Mengying Luo & Jiahui Chen & Tanay Kesharwani & Amir Badshah & Dong Wang, 2023. "Mechanistic Approach towards Designing Covalent Organic Frameworks for Photocatalytic Hydrogen Generation," Energies, MDPI, vol. 16(16), pages 1-39, August.
- Kaur, Gurpreet & Divya, & Khan, Saif A. & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2021. "Nano-hetero-structured thin films, ZnO/Ag-(α)Fe2O3, with n/n junction, as efficient photoanode for renewable hydrogen generation via photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 164(C), pages 156-170.
- A K M Khabirul Islam & Patrick S. M. Dunlop & Neil J. Hewitt & Rose Lenihan & Caterina Brandoni, 2021. "Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes," Clean Technol., MDPI, vol. 3(1), pages 1-27, February.
More about this item
Keywords
Langmuir-hinshelwood; Photocurrent; Photoluminescence; Solar energy conversion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:974-983. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.