IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p223-238.html
   My bibliography  Save this article

A tip loss correction model for wind turbine aerodynamic performance prediction

Author

Listed:
  • Zhong, W.
  • Shen, W.Z.
  • Wang, T.
  • Li, Y.

Abstract

The tip loss is an important phenomenon in wind turbine aerodynamics and has to be modelled separately in the blade element momentum (BEM) method for predicting the wind turbine aerodynamic performance. Instead of following the conventional trend of thought, the present study for the first time regards the interference factors as a summation of two parts. One is determined by the downwash due to the three-dimensional effect and the other is determined by rotation. Two corresponding factors of FS and FR are proposed to represent the effects of the two parts, respectively. This way of consideration implies a new model for the BEM method, providing appropriate tip loss predictions. The new model is validated in BEM computations of the NREL Phase Ⅵ rotor, the Swedish WG 500 rotor, and the NREL 5 MW reference rotor, with a radius of 2.675 m, 5.029 m and 63 m, respectively. It shows a good accuracy in a wide range of tip speed ratios from 1.58 to 11.3, and presents a good robustness in the cases involving high angles of attack and in the cases involving high axial interference factors. That makes the new model attractive for tip loss correction in BEM.

Suggested Citation

  • Zhong, W. & Shen, W.Z. & Wang, T. & Li, Y., 2020. "A tip loss correction model for wind turbine aerodynamic performance prediction," Renewable Energy, Elsevier, vol. 147(P1), pages 223-238.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:223-238
    DOI: 10.1016/j.renene.2019.08.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boatto, Umberto & Bonnet, Paul A. & Avallone, Francesco & Ragni, Daniele, 2023. "Assessment of Blade Element Momentum Theory-based engineering models for wind turbine rotors under uniform steady inflow," Renewable Energy, Elsevier, vol. 214(C), pages 307-317.
    2. Wei Zhong & Wen Zhong Shen & Tong Guang Wang & Wei Jun Zhu, 2019. "A New Method of Determination of the Angle of Attack on Rotating Wind Turbine Blades," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:223-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.