IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2658-2670.html
   My bibliography  Save this article

CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines

Author

Listed:
  • He, Jiao
  • Jin, Xin
  • Xie, Shuangyi
  • Cao, Le
  • Wang, Yaming
  • Lin, Yifan
  • Wang, Ning

Abstract

Computational fluid mechanics (CFD) is considered as an efficient approach for studying aerodynamic characteristics of vertical axis wind turbines (VAWTs). Currently, 2D Unsteady Reynolds-Averaged Naviere Stokes (URANS) is widely applied, although previous researches revealed its limit accuracy in the aerodynamic analysis. This paper investigates the accuracy and feasibility of various CFD modeling techniques, namely 2D URANS, 2.5D URANS, 2.5D large eddy simulations (LES), 3D URANS and 3D LES, in the aerodynamic study of VAWTs through a comparison with the wind tunnel results. Compared with the URANS method, the LES approach can provide more accurate prediction on the aerodynamic performance for VAWTs operating at the dynamic stall. The significant improved simulation results by 2.5D LES imply that the neglect of tip vortices may not be the major mechanism causing the over prediction in 2D and 2.5D URANS. 2.5D LES can be regarded as a promising and efficient approach to investigate the aerodynamic behaviors of VAWTs, considering the compromise between the accuracy and computational cost among 2.5D LES, 3D LES and 3D URANS. Furthermore, considering the huge amount of time consumed by CFD simulations, a hybrid meta-model is therefore proposed to predict the power coefficient of VAWTs. The prediction results show that the accuracy of the hybrid meta-model satisfies the requirements, and the calculation time is also reduced.

Suggested Citation

  • He, Jiao & Jin, Xin & Xie, Shuangyi & Cao, Le & Wang, Yaming & Lin, Yifan & Wang, Ning, 2020. "CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines," Renewable Energy, Elsevier, vol. 145(C), pages 2658-2670.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2658-2670
    DOI: 10.1016/j.renene.2019.07.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Oriol Bel Laveda & Marie-Alix Roche & Mohit Phadtare & Louise Sauge & Keerthana Jonnafer Xavier & Grishma Bhat & Divya Saxena & Jagmeet Singh Saini & Patrick G. Verdin, 2023. "Numerical Investigation of Aerodynamic Performance and Structural Analysis of a 3D J-Shaped Based Small-Scale Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(20), pages 1-18, October.
    3. Siddiqui, M. Salman & Khalid, Muhammad Hamza & Zahoor, Rizwan & Butt, Fahad Sarfraz & Saeed, Muhammed & Badar, Abdul Waheed, 2021. "A numerical investigation to analyze effect of turbulence and ground clearance on the performance of a roof top vertical–axis wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 978-989.
    4. Cameron Gerrie & Sheikh Zahidul Islam & Sean Gerrie & Naomi Turner & Taimoor Asim, 2023. "3D CFD Modelling of Performance of a Vertical Axis Turbine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    6. Poguluri, Sunny Kumar & Lee, Hyebin & Bae, Yoon Hyeok, 2021. "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2658-2670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.