IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2637-2646.html
   My bibliography  Save this article

See-through, light-through, and color modules for large-area tandem amorphous/microcrystalline silicon thin-film solar modules: Technology development and practical considerations for building-integrated photovoltaic applications

Author

Listed:
  • Tsai, Chin-Yi
  • Tsai, Chin-Yao

Abstract

See-through, light-through, and color modules are developed for large-area (1.3 m × 1.1 m) tandem amorphous/microcrystalline silicon thin-film solar modules for building-integrated photovoltaic (BIPV) applications. Key technologies for achieving these BIPV functionalities are developed and introduced into the 60 MW production line. These key technologies include post-scribing passivation of nano-size thin-films, large-area film uniformity, front reflective layers, 4-step laser scribing, transverse laser scribing, and peripheral pen-type junction boxes. This paper demonstrates and discusses the potential and versatility of these silicon thin-film modules in BIPV applications. It also shows that the BIPV modules’ specifications and performance mainly depend on the key technologies and their associated manufacturing processes in the production line. The electrical and optical performances of the BIPV modules are presented and important issues about their use in BIPV applications are also discussed.

Suggested Citation

  • Tsai, Chin-Yi & Tsai, Chin-Yao, 2020. "See-through, light-through, and color modules for large-area tandem amorphous/microcrystalline silicon thin-film solar modules: Technology development and practical considerations for building-integra," Renewable Energy, Elsevier, vol. 145(C), pages 2637-2646.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2637-2646
    DOI: 10.1016/j.renene.2019.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Li & Zhang, Jiqiang & Wang, Di & Wang, Ruohong & Sun, Yong & Wu, Cuigu, 2021. "Optimal design and photoelectric performance study of micro-lens light trapping structure for CIGS thin film solar cell in BIPV," Renewable Energy, Elsevier, vol. 177(C), pages 1356-1371.
    2. Shin, Dong-Youn & Shin, Woo-Gyun & Hwang, Hye-Mi & Kang, Gi-Hwan, 2023. "Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss," Applied Energy, Elsevier, vol. 332(C).
    3. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Pillai, Dhanup S. & Shabunko, Veronika & Krishna, Amal, 2022. "A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2637-2646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.