IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2159-2168.html
   My bibliography  Save this article

Kinetic study of the pyrolysis of microalgae under nitrogen and CO2 atmosphere

Author

Listed:
  • Hong, Yu
  • Xie, Chengrui
  • Chen, Wanru
  • Luo, Xiang
  • Shi, Kaiqi
  • Wu, Tao

Abstract

In this study, three primary components of algae (lipid, carbohydrate and protein) and one microalgae (spirulina) were pyrolyzed using a thermogravimetric analyser (TGA) under nitrogen and CO2 atmosphere at four heating rates. It was found that protein decomposed first, followed by carbohydrate and then lipid. The kinetic study revealed that the lowest activation energy for the initiation of the pyrolysis of ovalbumin (protein) is ∼70 kJ/mol. Oil droplet showed higher activation energy of 266.5 kJ/mol during its pyrolysis in the CO2 atmosphere, which suggests that algal lipid is more difficult to decompose in the CO2 atmosphere. However, for the pyrolysis of cellulose (carbohydrate), the activation energy (∼310 kJ/mol) is similar under two different gas atmospheres tested. This study showed that CO2 atmosphere favors the pyrolysis of algae with high protein content and low lipid content, since the existence of CO2 promotes the cracking of VOCs (volatile organic compounds) as well as the reaction between VOCs and CO2.

Suggested Citation

  • Hong, Yu & Xie, Chengrui & Chen, Wanru & Luo, Xiang & Shi, Kaiqi & Wu, Tao, 2020. "Kinetic study of the pyrolysis of microalgae under nitrogen and CO2 atmosphere," Renewable Energy, Elsevier, vol. 145(C), pages 2159-2168.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2159-2168
    DOI: 10.1016/j.renene.2019.07.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Congyu & Yang, Wu & Chen, Wei-Hsin & Ho, Shih-Hsin & Pétrissans, Anelie & Pétrissans, Mathieu, 2022. "Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process," Energy, Elsevier, vol. 240(C).
    2. Vikraman, V. Karuppasamy & Boopathi, G. & Kumar, D. Praveen & Mythili, R. & Subramanian, P., 2021. "Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 180(C), pages 838-849.
    3. Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
    4. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Wang, Rupeng, 2021. "Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative a," Energy, Elsevier, vol. 230(C).
    5. Xu, Donghua & Lin, Junhao & Ma, Rui & Fang, Lin & Sun, Shichang & Luo, Juan, 2022. "Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation," Renewable Energy, Elsevier, vol. 184(C), pages 124-133.
    6. Chakraborty, Sourabh & Dunford, Nurhan Turgut & Goad, Carla, 2021. "A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis," Renewable Energy, Elsevier, vol. 165(P1), pages 514-524.
    7. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2159-2168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.