IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp906-914.html
   My bibliography  Save this article

Development and application of flexible integrated microsensor as real-time monitoring tool in proton exchange membrane water electrolyzer

Author

Listed:
  • Lee, Chi-Yuan
  • Chen, Chia-Hung
  • Li, Shih-Chun
  • Wang, Yu-Syuan

Abstract

The proton exchange membrane (PEM) water electrolyzer has such advantages as simple system, low operating temperature and small-scale hydrogen production according to real time requirement, and the hydrogen production process is clean, meeting the environmental requirements. The PEM water electrolysis hydrogen production is the reverse reaction of fuel cell, but the water electrolysis requires high operating voltage, the resistance is likely to generate a lot of waste heat, and the nonuniform current density results in hot spots, the internal temperature rises, accelerating the decomposition of hydrogen molecules, the water electrolyzer is likely to age and fail. In addition, four important physical parameters (temperature, flow, voltage and current) in the running water electrolyzer can influence its performance and life, but the present bottleneck is external, theoretical, simulated or single measurement, the authentic information in the water electrolyzer cannot be obtained accurately and instantly. This study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated (temperature, flow, voltage and current) microsensor applicable to the high voltage and electrochemical environment in water electrolyzer, which is integrated with a 20 μm thick polyimide (PI) film material. The real-time microscopic diagnosis and measurement in the PEM water electrolyzer can measure the internal local temperature, voltage, current and flow distribution uniformity instantly and accurately, so as to optimize the operating conditions and analysis.

Suggested Citation

  • Lee, Chi-Yuan & Chen, Chia-Hung & Li, Shih-Chun & Wang, Yu-Syuan, 2019. "Development and application of flexible integrated microsensor as real-time monitoring tool in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 143(C), pages 906-914.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:906-914
    DOI: 10.1016/j.renene.2019.05.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811930744X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
    3. Wang, Kaichen & Feng, Yuancheng & Xiao, Feng & Zhang, Tianying & Wang, Zhiming & Ye, Feng & Xu, Chao, 2023. "Operando analysis of through-plane interlayer temperatures in the PEM electrolyzer cell under various operating conditions," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:906-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.